1) 11х = 36 - х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
36 - x = - ( x - 36)
Уравнение после преобразования:
11x = - (x - 36)
Упрощаем:
12x = 36
Сокращаем:
12(убираем)x = 12(убираем) * 3
x=3
2) 9х + 4 = 48 - 2х
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование правой части уравнения:
48 - 2x = -2 * (x - 24)
Уравнение после преобразования:
9x + 4 = -2 * (x - 24)
Упрощаем:
11x = 44
Сокращаем:
11(убираем)x = 11(убираем) * 4
x=4
3) 8 - 4х = 2х - 16
ОДЗ уравнения:
x ∈ ( -∞, ∞)
Делаем преобразование левой части уравнения:
8 - 4x = -4 * (x - 2)
Делаем преобразование правой части уравнения:
2x - 16 = 2 * (x - 8)
Уравнение после преобразования:
-4 * (x - 2) = 2 * (x - 8)
Упрощаем:
-6x = -24
Сокращаем:
-6(убираем)x = -6(убираем) * 4
x = 4
За остальным, если желаешь - в ЛС.
1. (x-2)√(x+5)/(x-3)√(x+3)≥0
вспоминаем про квадратный корень, что он всегда больше равен 0 и что подкоренное выражение всегда также больше равно 0. И знаменатель не равен 0
Итак (x+5)≥0 x≥-5
x+3>0 x>0
x-3≠0 x≠3
ОДЗ x∈(-3 3) U (3 + ∞)
одзз нашли значит корни можно отбросить так как они всегда больше равны 0
(x-2)/(x-3)≥0
используем метод интервалов находим интервалы и пересекаем с ОДЗ
[2] (3) (рисунок)
x∈(-∞ 2] U (3 +∞)∞ и пересекаем с ОДЗ x∈(-3 3) U (3 + ∞)
ответ x∈(-3 2] U (3 + ∞)
2. (x+1)(x-2)√(3-x)(x+2) > 0
ОДЗ подкоренное выражение больше (равно на этот раз не надо , так как строгое неравенство) 0
(3-x)(x+2)>0 Опять метод интервалов
(-2) (3)
x∈(-2 3)
опять одз нашли отбрасываем корень так как он больше 0 и методом интервалов решаем неравенство (x+1)(x-2) > 0 и пересекаем с одз
(-1) (2)
x∈(-∞ -1) U (2 +∞) и пересекаем с x∈(-2 3)
ответ х∈(-2 -1) U (2 3)
нравится решение ставь лайк и лучший