2) как известно все углы прямоугольника прямые. <А=<В=<С=<D=90`
С диагоналей разбивает их на прямоугольные треугольники ACD и АВС .
угол ACD равен 60' по условии задачи . А угол D =90' => угол CAD=30'. Итак все углы треугольника АСD известны теперь переходим на треугольник АВО. Т .к. угол А =90' в угол САD=30' угол ВАО=60' . Угол ВЕА =90' в угол BAO=60' значит угол ABE=30'=ЕВО.
По условии задачи ОЕ=4см . По условии прямоугольного треугольника :если один из углов треугольника равен 30' то противоположный катет равен половине гипотенузы. В нашем случае катет лежащий противоположно углу ЕВО=30' это ОЕ=4см
Отсюда следует что гипотенуза ВО=2ОЕ=2×4=8 . Так как точка О середина отрезка BD то ВD=2 ×BO=2×8=16
B прямоугольника диагонали равны значит диагональ АС=ВD= 16 см
Объяснение:
Объяснение:
Рассмотрим сначала первое неравенство системы.
Начнем с ОДЗ:
Продолжим решение:
1)
Замена: .
Обратная замена:
С учетом ОДЗ оба корня подходят.
2)
С учетом ОДЗ получим, что решение неравенства:
Теперь перейдем ко второму неравенству системы:
Понятно, что сначала нужно написать ОДЗ.
Продолжим решение:
Заметим, что данное неравенство хорошо раскладывается на множители:
Решим неравенство по методу интервалов.
1)
2)
Введем функции и
. Заметим, что первая функция возрастает, а вторая убывает. Поэтому, если уравнение имеет корень, он единственный. Теперь заметим, что x=2 - корень уравнения. Действительно,
, верно. Так, мы решили это уравнение, получив, что его корень x=2.
Тогда решение неравенства с учетом ОДЗ:
Итого имеем:
Найдем пересечение:
Задание выполнено!
y=- 2x^2+4x-3 это парабола ветви направлены вниз,можно построить по точкам,надавая значения х и находя значения у