экстремумы (sin a - cos a) найдем, приравняв к нулю производную:
cos a + sin a = 0
sin a = -cos a - решение в точках 3pi/4 + n*pi, n принадлежит Z
в точках 3pi/4 + 2n*pi, n принадлежит Z, sin a = (корень из 2)/2, cos a = -(корень из 2)/2, значит (корень из 2)/2 * sin a - (корень из 2)/2 * cos a = 2/4 - (-2/4) = 1 - максимум исходной функции.
в точках -pi/4 + 2n*pi, n принадлежит Z, sin a = -(корень из 2)/2, cos a = (корень из 2)/2, значит (корень из 2)/2 * sin a - (корень из 2)/2 * cos a = - 2/4 - 2/4 = -1 - минимум исходной функции.
Из вышесказанного можно сделать вывод, что исходное выражение будет лежать в данном интервале при любом значении альфа.
b(n) -геом пр-ия
b(1) = 4
q = 1/4
b(7) -?
b(n) = b(1) * q^(n-1)
b(7) = b(1) *q^(6)
b(7) = 4 * (1/4)^(6) = 4^(1) * 4^(-6) = 4^(1-6) = 4^(-5) = 1/1024