Система уравнений — это условие, состоящее в одновременном выполнении нескольких уравнений относительно нескольких (или одной) переменных.
Объяснение
Это самый метод, но зачастую – самый трудоемкий.
Идея нужно в одном из уравнений выразить одну переменную через другие, а затем полученное выражение подставить в остальные уравнения вместо этой переменной.
Затем точно так же выражаем и подставляем другую переменную и т.д., пока не получим уравнение с одной переменной.
После его решения и нахождения одной из переменных - последовательно возвращаемся к ранее выраженным, подставляя найденные значения.ние:
Над всеми векторами черта. Надо найти координаты векторов А₁А₂; А₁А₃; А₁А₄. для чего от координат конца вектора отнимаем координаты начала.
А₁А₂=(-2;7;-6); А₁А₃(-6;1;-3); А₁А₄(-13;0;-3), затем находим определитель третьего порядка
-2 7 -6
-6 1 -3
-13 0 -3, у меня нет тут вертикальных черточек для него , определитель равен
40 0 15
-6 1 -3
-13 0 -3
=1*(-1)²⁺²*(-120+195)=75, далее берем модуль 75, и делим его на шесть. это есть объем тетраэдра и он равен 75/6=12.5/ед. куб./
Чтобы найти высоту, опущенную на грань А₁А₂А₃, надо найти площадь грани А₁А₂А₃ , т.е. половину модуля векторного произведения векторов А₁А₂ и А₁А₃
Векторное произведение находим как определитель
i j k
-2 7 -6
-6 1 -3, он равен
i *(-21+6) -j *(6-36)+ k*(-2+42)= -15i +30j +40 k
определитель находил путем его разложения по элементам первой строки, зная координаты вектора (-15;30;40), можем найти половину модуля этого произведения, что и будет площадью грани А₁А₂А₃ , т.е.
0.5*√(225+900+1600)=0.5*√2725=2.5√109≈26.1
Зная площадь s грани А₁А₂А₃ и объем тетраэдра v можно теперь найти высоту h, опущенную на эту грань из вершины А₄, она равна h=3v/s=
3*12.5/(2.5√109)=15√109/109≈1.44
1) 4(5х-7)+3х+13 = 20х-28+3х+13 = 23х-15
2) 2(7-9а)-(4-18а) = 14-18а-4+18а = 10
3) 3(2p-7)-2(p-3) = 6р-21-2р+6 = 4р-15
4) -(3м-5)+2(3м-7) = -3м+5+6м-14 = 3м-9
5) 3(8а-4)+6а = 24а-12+6а = 30а-12
6) 7p-2(3p-1) = 7р-6р+2 = р+2
7) 2(3х-8)-5(2х+7) = 6х-16-10х-35 = -4х-51
8) 3(5м-7)-(15м-2) = 15м-21-15м+2 = -19