Проведем отрезки OB и OC, как показано на рисунке. Расстоянием от точки до прямой является длина перпендикуляра, проведенного к прямой. Поэтому, OE перпендикулярен AB, а OF перпендикулярен CD. Точки E и F делят свои хорды пополам (по свойству хорды) Получается, что треугольники OEB и OCF - прямоугольные, EB=AB/2 и CF=CD/2. По теореме Пифагора: OB2=OE2+EB2 OB2=242+(20/2)2 OB2=576+100=676 OB=26 OB=OC=26 (т.к. OB и OC - радиусы окружности) По теореме Пифагора: OC2=CF2+FO2 OC2=(CD/2)2+FO2 262=(CD/2)2+102 676=(CD/2)2+100 (CD/2)2=576 CD/2=24 CD=48 ответ: CD=48
Ну, это не так трудно, как кажется на первый взгляд...Главное это выразить правильное, давай попробую объяснить на примере:
1. Как я и говорила, главное правильно выразить. Т.е: в первом неравенстве, нам лучше выразить х (как никак, подставить вместо "3х" во втором неравенстве будет легче). У нас получается: х= -1-2y "2y" мы просто перенесли с противоположным знаком.
2. Теперь, нам нужно подставить вместо коэффициента х во втором неравенстве, то есть 3* х1 - 4у = 17, где х1 - это у нас выраженный "х" из первого неравенства. Что получается:
3*( -1-2у ) - 4у = 17
3. Решим получившееся уравнение. Для этого, сначала раскроем скобки(3 умножим на то выражение, которое стоит в скобках):
-3-6у-4у=17 Теперь у нас появились "-6у" и "-4у", которые можно сократить. А "-3" перенес с противоположным знаком в правую часть:
-10у=20 у=-2 Мы получили "у", но так же нам нужно найти и "х". Теперь значение "у" подставим в первое неравенство ( можно конечно и во второе, но если мы подставим в первое - будет легче считать). Да и мы же выразили, чем равен "х" в первом неравенстве:
х= -1-2у Подставим с тобой "-2" вместо "у", отсюда: х = -1-2*(-2) х = -1 + 4 "+4" получилось потому что мы умножили "-2" на "-2" (-2*-2=4) х=3 ответ : (3;-2) Запомни, на первом месте всегда х, потом у
2х^2 - 3х - 1 = 0 , тогда:
Первый коэффициент : 2
второй коэффициент : 3
-1 это свободный член