Правило.
(a - b)(a + b) = a² - b²
Объяснение:
(x - 5)(5 + x) = (x - 5)(x + 5) = x² - 5² = x² - 25
(8 + y)(y - 8) = (y + 8)(y - 8) = y² - 8² = y² - 64
(10 - k)(k + 10) = (10 - k)(10 + k) = 10² - k² = 100 - k²
(a + 2/4 * b)(a - 2/3 * b) = a² + 2/4 * ba - 2/3 * ba - 2/6 * b² =
= a² + 6/12 * ba - 8/12 * ba - 2/6 * b² = a² - 2/12 * ba - 2/6 * b² =
= a² - 1/6 * ba - 2/6 * b²
или
(a + 2/3 * b)(a - 2/3 * b) = a² - (2/3 * b)² = a² - 4/9 * b²
или
(a + 2/4 * b)(a - 2/4 * b) = a² + (2/4 * b)² = a² + (1/2 * b)² =
= a² + 1/4 * b² = a² + 0,25b²
(4/9 * x - y)(y + 4/9 * x) = (4/9 * x - y)(4/9 * x + y) = (4/9 * x)² - y² =
= 16/81 * x² - y²
(4/15 * n - m)(m + 4/15 * n) = (4/15 * n - m)(4/15 * n + m) =
= (4/15 * n)² - m² = 16/225 * n² - m²
(9x - 5y)(9x + 5y) = 81x² - 25y²
(-4a + 3b)(3b + 4a) = (3b - 4a)(3b + 4a) = 9b² - 16a²
(13k - 2d)(2d + 13k) = (13k - 2d)(13k + 2d) = 169k² - 4d²
(5/4 * c + 3/7 * d)(3/7 * d - 5/4 * c) = (3/7 * d - 5/4 * c)(3/7 * d + 5/4 * c) =
= (3/7 * d)² - (5/4 * c)² = 9/49 * d² - 25/16 * c² = 9/49 * d² - 1,5625c²
(1/3 * x - 3y)(3y + 1/3 * x) = (1/3 * x - 3y)(1/3 * x + 3y) = (1/3 * x)² - 9y² =
= 1/9 * x² - 9y²
(1/5 * a + 1/9 * b)(1/9 * b - 1/5 * a) = (1/9 * b - 1/5 * a)(1/9 * b + 1/5 * a) =
= (1/9 * b)² - (1/5 * a)² = 1/81 * b² - 1/25 * a² = 1/81 * b² - 0,04a²
лучше конечно читать параграф но я нашёл обьяснения
Объяснение:
Нули функции
Нулём функции называется то значение х, при котором функция обращается в 0, то есть f(x)=0.
Нули – это точки пересечения графика функции с осью Ох.
Четность функции
Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)
Четная функция симметрична относительно оси Оу
Нечетность функции
Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).
Нечетная функция симметрична относительно начала координат .
Функция которая не является ни чётной ,ни нечётной называется функцией общего вида.
Возрастание функции
Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е. x2>x1 → f(x2)>f(x1)
Убывание функции
Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е. x2>x1 → f(x2)<f(x1)
Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности. Функция f(x) имеет 3 промежутка монотонности:
(-∞ x1), (x1, x2), (x3; +∞)
Находят промежутки монотонности с сервиса Интервалы возрастания и убывания функции
Локальный максимум
Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) > f(x)
Локальный минимум
Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) < f(x).
Точки локального максимума и точки локального минимума называются точками локального экстремума.
x1, x2 - точки локального экстремума.
Периодичность функции
Функция f(x) называется периодичной, с периодом Т, если для любого х выполняется равенство f(x+T) = f(x).
Промежутки знакопостоянства
Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.
f(x)>0 при x∈(x1, x2)∪(x2, +∞), f(x)<0 при x∈(-∞,x1)∪(x1, x2)
Непрерывность функции
Функция f(x) называется непрерывной в точке x0, если предел функции при x → x0 равен значению функции в этой точке, т.е. .
Точки разрыва
Точки, в которых нарушено условие непрерывности называются точками разрыва функции.
x0- точка разрыва.
А || В || А+В
0 || 1. ||1
1 .|| .1 .||1
При В=1 (константа) А+1=1, ч.т.д.