4) √61
Объяснение:
Чтобы определить который из заданных чисел принадлежит промежутку [7; 8] необходимо сравнивать числа с границей промежутка. Но заданные числа иррациональные и поэтому будем сравнивать квадраты чисел с квадратом границ промежутка:
7²=49, 8²=64.
1) (√7)² = 7 и 7<49<64, что означает: √7 не принадлежит промежутку [7;8];
2) (√8)² = 8 и 8<49<64, что означает: √8 не принадлежит промежутку [7;8];
3) (√42)² = 42 и 42<49<64, что означает: √42 не принадлежит промежутку [7;8];
4) (√61)² = 61 и 49≤61≤64, что означает: √61 принадлежит промежутку [7;8].
4) √61
Объяснение:
Чтобы определить который из заданных чисел принадлежит промежутку [7; 8] необходимо сравнивать числа с границей промежутка. Но заданные числа иррациональные и поэтому будем сравнивать квадраты чисел с квадратом границ промежутка:
7²=49, 8²=64.
1) (√7)² = 7 и 7<49<64, что означает: √7 не принадлежит промежутку [7;8];
2) (√8)² = 8 и 8<49<64, что означает: √8 не принадлежит промежутку [7;8];
3) (√42)² = 42 и 42<49<64, что означает: √42 не принадлежит промежутку [7;8];
4) (√61)² = 61 и 49≤61≤64, что означает: √61 принадлежит промежутку [7;8].
1) Приводим левую часть к общему знаменателю:
(3х-5)(х-2)-(2х-5)(х-1)/(х-1)(х-2)=1
2) Если уравнение равное единицы, то знаменатель дроби и числитель равны между собой, следовательно, получаем следующее:
(3х-5)(х-2)-(2х-5)(х-1)=(х-1)(х-2)
3) Раскрываем скобки по всем правилам:
3х^2-6х-5х+10-2х^2+2х+5х-5=х^2-2х-х+2
4) Все с х и х^2 в одну сторону с противоположным знаком , приводим подобные и производим необходимы действия:
3х^2-2х^2-х^2-6х-5х+2х+5х+2х+х=-10+5+2
-х=-3/:(-1)
х=3
5) Проверяем, подставив ответ в исходное уравнение