x ∈ (-∞, -1) ∪ (-1/3, 0] ∪ [4, +∞)
Объяснение:
находим ОДЗ x ∉ [ -1, -1/3 ] отсюда>>
область допустимых значений: x ∈ (-∞,-1) ∪ (-1/3, +∞)
Для а>1 выражение log a(x) ≥ log a(y) равно x≥y
4x^2 + 1 ≥ 3x^2 + 4x + 1
4x^2 ≥ 3x^2 + 4x
4x^2 - 3x^2 - 4x ≥ 0
x^2 - 4x ≥ 0
x ( x - 4 ) ≥ 0
возможны 2 случая когда произведение a*b будет ≥ 0.
(либо два отрицательных)
(либо два положительных)
Проверяем
x≥0 <=> x≥0 <=> x ∈ [4 , +∞ )
x-4≥0 x≥4
x ≤ 0 <=> x≤0 <=> x ∈ ( - ∞, 0 ]
x - 4 ≤0 x≤4
находим объединение для x ∈ ( - ∞, 0 ] и x ∈ [4 , +∞ ), получаем множество решений
МНОЖЕСТВО РЕШЕНИЙ x∈ (- ∞,0] ∪ [4, +∞) ,
ОБЛАСТЬ ДОПУСТИМЫХ ЗНАЧЕНИЙ x ∈ (-∞,-1) ∪ (-1/3, +∞)
нахождение пересечения множеств решений и области допустимых значений
x ∈ (-∞, -1) ∪ (-1/3, 0] ∪ [4, +∞)
n3-n2-4n+9/n-2=n2+n-6 и остаток -3
n3-n2-4n+9/n-2 = n2+n-6-3/n-2
Следовательно 3 - это делитель n-2
n-2=1 n-2=-1 n-2=3 n-2=-3
n=3 n=1 n=5 n=-1(n не принадлежит N)
a) 1) 3*3+3-6-(3/3-2)=6-3=3 - значение функции является целым числом
2) 1*1+1-6-(1/1-2)=-4+1=-3 - значение является целым
3) 5*5+5-6-(3/5-2)= 24-1=23 - значение является целым числом
б) 1) =3 - значение функции является натуральным числом
2) =-3 - значение не является натуральным
3) =23 - значение является натуральным
ОТВЕТ: а) 3, -3, 23
б) 3, 23
Решение в приложенном файле.