ответ: 17,5 км/час. 2,5 км/час.
Объяснение:
катер 30 км по течению реки за 1,5 часа
и вернулся на туже пристань потратив на обратный путь 2 часа
найдите собственную скорость катера
и скорость течения реки.
Решение.
Находим скорость катера по течению S=v1t; 30=v1*1.5;
v=30/1.5;
v=20 км/час.
Находим скорость катера против течения S=v2t; 30=v2*2;
v2=30/2;
v2=15 км/час.
Находим скорость течения реки
2х=v2-v1, где х- скорость течения реки
2x=20-15;
2x=5;
x=2.5 км/час - . скорость течения реки. Тогда
собственная скорость катера равна:
20-2,5=17,5 км/час - собственная скорость катера
или
15+2.5 = 17,5 км/час - собственная скорость катера.
а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.
б). Да, 123...9899 делится на 9.
Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.
Цифра 0:
10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.
Цифра 1:
1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.
Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).
Теперь нужно узнать, делится ли число 1234..9899 на 9.
Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.
Для этого найдем искомую сумму по формуле арифметической прогрессии:
Так как получилось разделить нацело, то 1234...9899 делится на 9.
1.AB=sqrt (1+4+9)=sqrt(14)
BC=sqrt (4+4+4)=sqrt(12)
AC=sqrt(9+0+1)=sqrt(10)
cos C= (12+10-14)/ (2*sqrt(120))=4/(2*sqrt(30))=2*sqrt(30)/30
C=arccos( 2*sqrt(30)/30 )
2.6/х=5-х
6=х(5-х)
6=5х-х^2
х^2-5х+6=0
д=25-24=1
х=(5+1)/2=3 х=(5-1)/2=2
тоді у=6/3=2 у=6/2=3
точки перетину 1) (3;2) 2) (2;3)
3. координати точки D симетричної точці А(-1,1,2) відносно початку координат:
(-2,-1,1)
паралельне перенесення задається формулами
x'=x+a
y'=y+b
z'=z+c
знайдемо параметри а, b, c
1=2+a
-1=1+b
0=-1+c
a=-1
b=-2
c=1
x'=x-1
y'=y-2
z'=z+1
знайдемо координати точки М
x'=-2-1=-3
y'=-1-2=-3
z'=1+1=2
координати точки М
(-3;-3;2)