М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
muzaka
muzaka
17.01.2022 00:45 •  Алгебра

Разложить выражение на множители, используя формулу разности квадратов: 1) 25-р= 2)11-в(в квадрате)= 3)m-100=

👇
Ответ:
vlad499999
vlad499999
17.01.2022
1) 25-р=(5-√p)(5+√p)

2)11-в(в квадрате)=(√11-в)(√11+в)

3)m-100=(√m-10)(√m+10)
4,7(77 оценок)
Открыть все ответы
Ответ:
аслан91
аслан91
17.01.2022

Пусть Х1, Х2 ... Xn - выборка независимых случайных величин.

Упорядочим эти величины по возрастанию, иными словами, построим вариационный ряд:

Х(1) < Х(2) < ... < X (n) , (*)

где Х(1) = min ( Х1, Х2 ... Xn),

Х(n) = max ( Х1, Х2 ... Xn).

Элементы вариационного ряда (*) называются порядковыми статистиками.

Величины d(i) = X(i+1) - X(i) называются спейсингами или расстояниями между порядковыми статистиками.

Размахом выборки называется величина

R = X(n) - X(1)

Иными словами, размах это расстояние между максимальным и минимальным членом вариационного ряда.

Выборочное среднее равно: = (Х1 + Х2 + ... + Xn) /

4,8(79 оценок)
Ответ:
adele978645312
adele978645312
17.01.2022
(xcos(y)-ysin(y))dy+(x+sin(y)+ycos(y))dx=0
xsin(y)+ycos(y)+dy(xcos(y)-ysin(y))=0
Допустим, R(x,y)=xsin(y)+ycos(y) и S(x,y)=xcos(y)-ysin(y).
Это не строгое уравнение,т.к. R'(x,y)=xcos(y)-ysin(y)+cos(y)≠cos(y)=
dS(x,y).
Найдем интегрирующий фактор u(x), такой что u(x)*R(x,y)+u(x)dy*
S(x,y)=0.
Это означает: (u*R(x,y))'=d(u(x)*S(x,y)):
(cos(y)+xcos(y)-ysin(y)u(x)=du(xcos(y)-ysin(y))+cos(y)u(x)
\frac{du}{u}=1
ln(u)=1
u=e^x
e^x(xsin(y)+ycos(y))+(e^x(xcos(y)-ysin(y))dy=0

Допустим, P(x,y)=e^x(xsin(y)+ycos(y)) и Q(x,y)=e^x(xcos(y)-ysin(y)).
Это строгое уравнение,т.к. P'(x,y)=e^x(xcos(y)-ysin(y)+cos(y))=dQ(x,y).
Введем f(x,y), такой что df(x,y)=P(x,y) и f'(x,y)=Q(x,y):
Затем, решение будет для f(x,y)=c1, где c1- произвольная переменная.
f(x,y)=\int{e^x(ycos(y)+xsin(y)} dx=e^x(ycos(y)+sin(y)(x-1)+g(y);
где g(y)- некоторая функция от y.
f'(x,y)=(e^x(ycos(y)+sin(y)(x-1))+g(y))'=
=e^x(cos(y)+cos(y)(x-1)-ysin(y))+g'(y)
Сделаем замену f'(x,y)=Q(x,y):
e^x(cos(y)+cos(y)(x-1)-ysin(y))+g'(y)=e^x(xcos(y)-ysin(y))
Возьмем g'(y):
g'(y)=0
g(y)=\int0\ dy=0
Подставим g(y) к f(x,y):
f(x,y)=e^x(ycos(y)+sin(y)(x-1))
Получаем решение:
e^x(ycos(y)+sin(y)(x-1))=c_1
4,4(79 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ