1024
Объяснение:
берем все возможные комбинации:
1 к 9, а с учетом что 10 возможных учебников то 10 вариаций
2 к 8 = 45 вариаций( 10 на первой позиции умножаем на 9 во второй и делим на 2 из-за повторений)
3 к 7 = 120 вариаций(10*9*8 и делим на 6)
4 к 6 = 210 вариаций (10*9*8*7 и делим на 24(2*3*4))
5 к 5 = 252 вариации (10*9*8*7*6 и делим на (2*3*4*5) все из за повторений, нам же не надо чтоб считалось разный порядок но на одной и той же фирме)
и теперь мы умножаем все кроме 5 к 5 на 2, т.к. тогда мы посчитали только в сторону 1 фирмы, а теперь и в сторону второй
выходит:
10*2+45*2+120*2+210*2+252=20+90+240+420+252=110+660+252=770+252=1022
точно быть уверенным в этом ответе не могу, но на мое мнение так должно решаться
редактированная часть:
узнав ответ из учебника в комментарии мы поняли что не хватает еще 2 вариантов:
0 учебников в 1 фирме и 0 учебников во второй
по-этому прибавляем еще 2
(4x² - 4xy + y²) + (x² +4x + 4) =0
(2x - y)² +(x + 2)² =0
(2x - y)² = -(x + 2)²
Заметим, что -(x + 2)² всегда имеет отрицательное значение, но (2x - y)² всегда больше или равен 0. Значит условие выполняется только тогда, когда левая и правая части равны 0.
Получим систему уравнений:
1)-(x + 2)² =0
2)(2x - y)² = 0
1. -(x + 2)² =0
(x + 2)(x + 2) = 0 откуда видно, что x = -2
2. (2x - y)² = 0
Подставляем наш x и получаем
(-4 - y)² = 0
(-4 - y)(-4 - y) = 0
А значит y = -4
Тогда ответ: x=-2, y=-4