При любом значении, которое больше единицы.
Возьмём простую идеальную передачу (КПД = 1).
i = ω1/ω2 = z2/z1 = М2/М1 = F*d2/(F*d1) = d2/d1
i - передаточное число
ω - угловая скорость
z - количество зубьев шестерни
М - крутящий момент
d - плечо силы
1 и 2 - номер шестерни (1 - ведущая, 2 - ведомая)
При увеличении размеров шестерни уменьшается угловая скорость и увеличивается крутящий момент передачи. Ведущая шестерня имеет размеры меньше, следовательно, её крутящий момент меньше, а угловая скорость больше. Любое из выше обозначенных отношений, характеризующих передаточное число i, показывает, что при числителе, который больше знаменателя, результат выходит больше единицы:
i = ω1/ω2
т.к. ω1 > ω2, то i > 1
ответ: при i > 1.
1.Найдите:
А) Амплитуду колебаний заряда.
В общем виде уравнение колебаний заряда q=qm*cos(ωt). Cопоставляя получаем qm=5*10^-4 Кл.
Б) Период. ω= 10^3π. Из ω = 2π/T, T=2π/ω=2π/(10^3π)=2*10^-3 c.
В) Частоту. Из υ=1/T, υ=1/(2*10^-3) =0,5*10^3 Гц= 500 Гц.
Г) Циклическую частоту. ω= 10^3π Гц= 3140 Гц.
2. Запишите уравнения зависимости напряжения на конденсаторе от времени:
Из формулы емкости конденсатора С=q/U имеем
u(t) = q(t)/C =
(5*10^-4cos(10^3πt))/(10*10^-12) = 0,5*10^8 cos(10^3πt):
и силы тока в контуре от времени: в общем виде i(t) =q(t) '=Imcos(ωt+π/2) - ток опережает колебания напряжения на конденсаторе на π/2, Im=ω*qm; Im=10^3π*5*10^-4=1,57 A.
Значит i(t) =1,57cos(10^3πt+π/2).