Если я не ошибаюсь, то доказательство не сложное.
По второму признаку равенства прямоугольных треугольников: острый угол(А) и прилежащий к нему катет(АС) одного треугольника соответственно равны острому углу(А) и прилежащему к нему катету(АВ) другого треугольника.
По рисунку, АС и АВ равны. А острый угол, прилежащий к обоим этим катетам, у обоих треугольников общий. Следовательно, у обоих треугольников он равен. И, доказав, что острый угол А и прилежащий к нему катет АС треугольника ACD соответственно равен острому углу А и прилежащему к нему катету АВ треугольника ABF, мы доказали равенство этих обоих треугольников.
Ч.т.д.
6) Хорды AB и CD пересекаются в точке E, тогда верно равенство
АE·BE=CE·DE
7) Длину окружности можно вычислить по двум формулам: C = 2πr или C = πd, где π – число «пи» (математическая константа, приблизительно равная 3,14) X Источник информации , r – радиус окружности, d – диаметр окружности.
8) Формула для вычисления площади круга
1) Площадь круга равна произведению квадрата радиуса на число пи (3.1415). 2) Площадь круга равна половине произведения длины ограничивающей его окружности на радиус.
9)Окружность называется вписанной в треугольник, если она касается всех его сторон. Окружность называется описанной около треугольника, если она проходит через все его вершины. Теорема 1. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.