ответ: Коллинеарны.
Объяснение:
Что бы векторы были коллинеарны, достаточно, что бы координаты одного вектора получались умножением координат второго на одно и то же число, то есть, к примеру, вектор а=m*b
Пусть это число m. Тогда
для координат у имеем 1*m= 2 и отсюда сразу m=2
Теперь составим два уравнения для координат х и z
для координат х
имеем 2*m = n², то есть 2*2 = n², а отсюда n=2 или n=-2
Для координат z
имеем n*m = -4, то есть 2n = -4, отсюда n= -2
Значит n=2 не годится, и остается n = -2
проверим, для чего координаты вектора а должны получаться при умножении координат вектора b на m, то есть на 2. При этом n=-2 :
2*2= (-2)² - верно
1*2=2 - верно
-2*2= -4 - верно.
Векторы коллинеарны.
Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".
Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.
По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.
Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.
Высота С1Н из прямого угла по ее свойству равна:
С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.
Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.
α = arcsin0,2823 ≈ 16,4°.