16) из уравнения окружности следует, что радиус окружности =
V18 = 3V2 = CA = CB
радиус, проведенный в точку касания, перпендикулярен касательной, ---> треугольники СВО и САО -это равные прямоугольные треугольники (по гипотенузе и катету);
СО -биссектриса угла АОВ, т.е. достаточно найти острый угол прямоугольного треугольника (например, СОА) и умножить на 2...
гипотенуза СО -это диагональ квадрата со стороной 6, СО=6V2;
sin(COA) = 3V2 / (6V2) = 1/2
угол СОА = 30°
угол ВОА = 60°
10) прямая у=х -это биссектриса первого и третьего координатных углов, т.е. угол наклона прямой ОВ к оси ОХ 45°; вторая прямая имеет угловой коэффициент k=V3 -это тангенс угла наклона прямой к оси ОХ (можно построить соответствующие прямоугольные треугольники), т.е. угол наклона прямой ОА к оси ОХ 60°;
Задача на подобие треугольников. Сделаем рисунок по условию задачи и рассмотрим его. В треугольниках ВDЕ и АВС ∠ВЕD=∠ВСА как соответственные при параллельных прямых ВЕ и АС и секущей ВС. ∠ВDЕ=∠ВАС как соответственные углы при параллельных прямых DЕ и АС и секущей ВА. ∠В общий. ⇒ эти треугольники подобны. АВ:ВD=АС:DЕ и ВС:ВЕ=АС:DЕ Пусть ВD=х, а ВЕ=у. Тогда АВ:ВD=(х+7,2):х=16:10, откуда х=12 ( уравнение простое, решить его самостоятельно несложно) Точно так же (у+7,8):у=16:10, откуда у=13. Следовательно, ВD=12, DЕ=13 ( ед. длины)
Диагонали ромба делят углы пополам, пересекаются под прямым углом и в точке пересечения делятся пополам. В результате пересечения диагоналей образуются прямоугольные треугольники с гипотенузой равной стороне ромба и катетами равными половине диагоналей. В нашем случае гипотенуза - 19, а один из острых углов - 30°. В прямоугольном треугольнике против угла 30° лежит катет в два раза меньший гипотенузы. Угол 30° - меньший из углов треугольника. Против меньшего угла лежит меньшая сторона. Таким образом меньшая диагональ равна 19/2*2=19 ед. И самый простой Второй угол ромба - 180-60=120°. Диагональ делит его на равносторонний треугольник. Меньшая диагональ равна 19 ед.
ответ: 60°; 15°.
Объяснение:
16) из уравнения окружности следует, что радиус окружности =
V18 = 3V2 = CA = CB
радиус, проведенный в точку касания, перпендикулярен касательной, ---> треугольники СВО и САО -это равные прямоугольные треугольники (по гипотенузе и катету);
СО -биссектриса угла АОВ, т.е. достаточно найти острый угол прямоугольного треугольника (например, СОА) и умножить на 2...
гипотенуза СО -это диагональ квадрата со стороной 6, СО=6V2;
sin(COA) = 3V2 / (6V2) = 1/2
угол СОА = 30°
угол ВОА = 60°
10) прямая у=х -это биссектриса первого и третьего координатных углов, т.е. угол наклона прямой ОВ к оси ОХ 45°; вторая прямая имеет угловой коэффициент k=V3 -это тангенс угла наклона прямой к оси ОХ (можно построить соответствующие прямоугольные треугольники), т.е. угол наклона прямой ОА к оси ОХ 60°;
искомый угол = разности этих углов 60°-45°=15°.