Пирамида правильная, значит в основании квадрат. Обозначим пирамиду SАВСД. S -вершина. Проведём диагонали АС и ВД. В квадрате диагональ равна (а корней из2). Где а -сторона квадрата. По условию а=1,тогда АС=ВД= корень из 2. Расстояние между SВ и АС это перпендикуляр ОК из точки пересечения диагоналей О к ВS. Рассмотрим треугольник SВО( можно нарисовать отдельно). Это прямоугольный треугольник, у которого гипотенуза SВ=1(ребро пирамиды), катет ВО=ВД/2=(корень из 2 )/2. Второй катет SО это высота пирамиды. SО= корень из (ВSквадрат-ВОквадрат)=корень из (1-2/4)=(корень из 2)/2. Площадь треугольника Ssво=1/2*ВО*SО, она также равна Ssво=1/2*ВS*ОК. Приравнивая оба этих выражения, получим 1/2*(корень из 2)/2*(корень из 2)/2=1/2*1*ОК. Отсюда искомое расстояние ОК=1/2.
ответ: В соответствии с классическим определением, уго� между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Подробнее - на -
Объяснение: