1. Найдите диагональ квадрата, если его площадь равна 12.5. Формула площади квадрата через диагональ
d² = 12,5*2 = 25 ⇒ d = √25 = 5 Диагональ квадрата равна 5
2.Найдите сторону квадрата, площадь которого равна площади прямоугольник со сторонами 13 и 52. Площадь прямоугольника: 13*52 = 676 Площадь квадрата: a² = 676; a = √676 = 26 Сторона квадрата равна 26
3. Найдите площадь параллелограмма, если две его стороны равны 40 и 10, а угол между ними равен 30. S = 40*10*sin30° = 400*1/2 = 200 Площадь параллелограмма равна 200
4. Периметры двух подобных многоугольников относятся как 1:3, Площадь меньшего равна 3. Найдите площадь большого. Коэффициент подобия k=1/3. Площади подобных фигур относятся как коэффициент подобия в квадрате.
S₂ = 3*9 = 27 Площадь большего треугольника равна 27
5. Площадь круга равна 121:3.14. Найдите длину его окружности. π≈3,14. Формула площади круга
Формула длины окружности
Длина окружности равна 22
6. Найдите площадь сектора круга радиуса 48:(квадратный корень пи), Центральный угол которого равен 90
Задача 1 Сначала проверяем, подобны ли данные треугольники, если они подобны, то соотношение соответственных сторон должно быть правильным, значит: АС/А₁С₁=ВС/В₁С₁ 4/6=12/18 4*18=6*12 72=72 значит треугольники подобны Тогда составляем пропорцию с неизвестной стороной А₁В₁: АВ/АС=А₁В₁/А₁С₁ 10/4=А₁В₁/12 А₁В₁=10*12/4=30
Задача 2 Мы знаем что, площади подобных треугольников относятся как квадраты сходственных сторон., Значит: 18/288=9²/А₁В₁ А₁В₁=288*81/18==36
Задача 3 Рассмотрим треугольники АОВ и ДОС, они подобны по первому признаку (когда два угла одного треугольника соответственно равны двум углам другого треугольника), так как ∠АОВ=∠ДОС как вертикальные, а ∠АВД=∠ВДС как внутренние накрест лежащие (так как АВ параллельно ДС, ведь АВСД трапеция и АВ и СД ее основания) Тогда составляем пропорцию отношения сторон подобных треугольников: ДО/ДС=ОВ/АВ 20/50=8/АВ АВ=50*8/20=20 ответ АВ=20
Формула площади квадрата через диагональ
d² = 12,5*2 = 25 ⇒ d = √25 = 5
Диагональ квадрата равна 5
2.Найдите сторону квадрата, площадь которого равна площади прямоугольник со сторонами 13 и 52.
Площадь прямоугольника: 13*52 = 676
Площадь квадрата: a² = 676; a = √676 = 26
Сторона квадрата равна 26
3. Найдите площадь параллелограмма, если две его стороны равны 40 и 10, а угол между ними равен 30.
S = 40*10*sin30° = 400*1/2 = 200
Площадь параллелограмма равна 200
4. Периметры двух подобных многоугольников относятся как 1:3,
Площадь меньшего равна 3. Найдите площадь большого.
Коэффициент подобия k=1/3. Площади подобных фигур относятся как коэффициент подобия в квадрате.
S₂ = 3*9 = 27
Площадь большего треугольника равна 27
5. Площадь круга равна 121:3.14. Найдите длину его окружности.
π≈3,14. Формула площади круга
Формула длины окружности
Длина окружности равна 22
6. Найдите площадь сектора круга радиуса 48:(квадратный корень пи),
Центральный угол которого равен 90
Формула площади сектора с центральным углом α
Площадь сектора равна 576