ответ: гипотенуза равна 2*b (катет, лежащий против угла в 30 градусов, равен половине гипотенузы). Другой катет лежит против угла в 180-90-30=60 градусов и равен 2*b*sin (60)=b*√3. периметр равен b+2*b+b*√3=b*(3+√3).
Дали нам высоту проведенную на гипотенузу, а значит вершина угла из которого вышла высота : угол BCA ( ты написал все без чертежа, я сделал свой чертеж по твоему условию) А угол BCA= 90 градусов Так же знаем угол ACK =34 градуса,
Так же по свойству высоты мы знаем что CK перпендикулярен AB , а значит СKB = 90 градусов.
Что бы найти угол В, мы должны знать все углы треугольника BCK
Находим угол BCK = 90-34= 56
Теперь делаем уравнение: 56+90+угол В= 180 градусов
Может, решение громоздкое получилось, но другое как-то не придумалось Через подобные треугольники и формулу хорды. Из точки М опускаем перпендикуляр на сторону АС, точку пересечения обозначим через Р. Треугольник АМР подобен треугольнику АВС, откуда АР/АС=АМ/АВ=9/25. Отсюда находим АР=27/25 см. Теперь обозначаем через О середину стороны АС (т. е. центр окружности) и рассматриваем треугольник ОМР с прямым углом Р. Находим для этого треугольника угол О через его косинус: ОР=АО-АР=ОМ*cosO, отсюда cosO=7/25. Теперь найдём хорду АМ, по формуле хорды АМ=2*ОМ*sin(O/2). По формулам приведения sin(O/2)=sqrt((1-cosO)/2)=3/5, поэтому получаем АМ=1,8 см. По пропорции АМ/АВ=9/25 получаем АВ=5 см. По теореме Пифагора ВС=4 см, тогда искомая площадь треугольника равна АС*ВС/2=6 см кв.
ответ: гипотенуза равна 2*b (катет, лежащий против угла в 30 градусов, равен половине гипотенузы). Другой катет лежит против угла в 180-90-30=60 градусов и равен 2*b*sin (60)=b*√3. периметр равен b+2*b+b*√3=b*(3+√3).
Объяснение: