М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ruda05
Ruda05
15.12.2021 17:52 •  Геометрия

Прямі a і b паралельні знайдіть mb2 якщо ma1=a1 b2 і ma2=2см

👇
Открыть все ответы
Ответ:
movamrr
movamrr
15.12.2021
По условию углы при основании трапеции равны(т.к. она равнобедренная), следовательно в получившемся прямоугольном треугольнике, образованным диагональю, большим основанием и боковой стороной острые углы равны 60 гр. и 30 гр. Боковая сторона этого треугольника есть катет,  лежащий против угла в 30 гр., следовательно он равен произведению другого катета и tg 30.
Получаем 6*tg 30=6*V3/3=2V3
 Следовательно боковые стороны и меньшее основание равны 2V3.
Найдем большее основание. Оно есть гипотенуза
в образованном прямоугольном треугольнике. Боковая сторона есть  катет, лежащий против угла в 30 гр., следовательно она меньше гипотенузы в два раза. Т.о. большее основание равно двум боковым сторонам, т.е. 2*2V3=4V3. Далее находим периметр.
Большее основание равно 6
4,5(6 оценок)
Ответ:
Теорема: Центр вписанной в треугольник окружности лежит на пересечении биссектрис внутренних углов треугольника.
Доказательство: Действительно, вписанная в треугольник ABC окружность с центром в точке O касается всех сторон треугольника по определению вписанной окружности. Это значит, что точка O удалена от сторон треугольника ABC на расстояние, равное радиусу вписанной окружности, то есть точка O равноудалена от сторон треугольника ABC. Следовательно, точка O равноудалена от сторон AB и AC, то есть лежит на биссектрисе угла A. Аналогично точка O лежит на биссектрисе углов B и C. Теорема доказана.
Мы знаем, что центр окружности равноудален от всех точек окружности (по определению) в том числе и от точек касание сторон треугольника. Также мы знаем, что каждая точка биссектрисы угла равноудалена от сторон угла. А точка пересечения биссектрис треугольника равноудалена от каждой стороны, т. к. равноудалена от трех пар сторон для кадой биссектрисы. Таким образом, в треугольнике есть только одна точка равноудаленная от всех сторон - это пересечение биссектрис треугольника. Поэтому центр лежит именно в этой точке. 
4,5(18 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ