Боковые стороны, значит, равны по 4 см, т.к. равны у равнобедренного треугольника, и синус 120 градусов равен синусу 60 градусов, равен √3/2, тогда площадь равна половине произведения боковых сторон на синус угла между ними.
(4*4*√3/2)/2=4√3/см²/, найдем теперь по теореме косинусов основание равнобедренного треугольника, учитывая , что косинус 120 град. равен -1/2, основание равно
√((4²+4²-2*4*4*(-1/2))=4√3, значит, радиус описанной окружности равен а*в*с/4S=(4*4*4√3)/(4*4√3)=4/см По теореме синусов а/sinα=2*R
R=a/2sinα, найдем угол α при основании и подставим в эту формулу.
Углы при основании равны, поэтому α=(180°-120°)/2=30°
Итак, радиус равен 4/(2sin30°)=4/(2*1/2)=4/cм/
ΔCDB - прямоугольный. R=1/2·BC.(Радиус окружности ,описанной около прямоугольного треугольника = половине гипотенузы)
S(ΔDBC)/S(ΔABC) = DB·BC/AB·BC ⇒ S(ΔDBC)/S(ΔABC) = DB/BC (1)
S(ΔDBC)=1/2 DB·DC=1/2·DB·12=6·DB S(ΔDBC) = 6·DB
S(ΔABC)=1/2 AC·BE =1/2AC·10= 5·AC S(ΔABC)=5·AC
Получили,что S(ΔDBC)/ S(ΔABC) = 6·DB /5·AC (2)
Следовательно, DB / BC = 6·DB / 5·AC ⇒ 5AC=6BC (3)
Из Δ ВЕС найдём ЕС =х по т. Пифагора : ЕС²=ВС²-ВЕ²
х²=а²-10² ⇒ х=√а²-100 АС=2х=2·√а²-100
Используем (3) равенство : 5 АС=6 ВС и АС=2х ⇒
5·2√а²-100 = 6а ⇒ 100·(а²-100)=36 а² ⇒ 64 а²=10000
а²=10000 / 64 ⇒ а=100 / 8 R = 1/2 a = 50/8 = 25 / 4