Объяснение:
4. Используем одно из свойств прямоугольных треугольников: если катет прямоугольного треуг-ка равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. В нашем случае КН=1/2ТН, значит, <KTH=30°.Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, найдем угол ТНК:
<THK=90-<KTH=90-30=60°.
5. Используем один из признаков равенства прямоугольных треугольников: если гипотенуза и острый угол одного прямоугольного треуг-ка соответственно равны гипотенузе и острому углу другого, то такие треуг-ки равны. В нашем случае AD - общая гипотенуза, а углы BAD и CAD равны по условию, т.к. DA - биссектриса. Треугольники ABD и ACD равны. Равны и их катеты АВ и АС.
Объяснение:
4. Используем одно из свойств прямоугольных треугольников: если катет прямоугольного треуг-ка равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°. В нашем случае КН=1/2ТН, значит, <KTH=30°.Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, найдем угол ТНК:
<THK=90-<KTH=90-30=60°.
5. Используем один из признаков равенства прямоугольных треугольников: если гипотенуза и острый угол одного прямоугольного треуг-ка соответственно равны гипотенузе и острому углу другого, то такие треуг-ки равны. В нашем случае AD - общая гипотенуза, а углы BAD и CAD равны по условию, т.к. DA - биссектриса. Треугольники ABD и ACD равны. Равны и их катеты АВ и АС.
Т.к угол С=90 градусов, а угол В=60 градусов,то угол А=30 градусов(180-(60+90)), из этого следует что против угла 30 градусов, катет равен половине гипотенузе, следовательно 15/2=7,5 ВС=7,5