Вцилиндре с высотой 10 см и радиусом 5 см проведено осевое сечение. определите: а) площадь осевого сечение цилиндра; б) площадь сечения цилиндра, параллельного оси и отстоящего от неё на 3 см.
1. Найдем сторону ромба 300:4=75, так как стороны ромба равны
2. диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно треугольник АВО - прямоугольный и АО:BO=1,5:2
Пусть х - коэффициент пропорциональности Тогда по теореме Пифагора АВ^2=АО^2+BO^2 75^2=(1,5х)^2+(2x)^2 х=30 и х=-30( не подходит, так как значение отрицательное)
тогда диагонали ромба АС=90 , а BD=120
Площадь ромба S= 0,5 * АС*ВD=0,5*90*120=5400 с другой стороны площадь ромба S=АВ*H 5400=75*h, где h - высота h=5400/75 h=72
Хорошо, сведем задачу к нахождению диагонали трапеции т.к. есть формула S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3. Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС: угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) далее возьмем прямоугольный треугольник АНС где АН- высота: угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30 тогда угол НАС равен 180-90-30=60 АН=2 найдем сторону НС: по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3= 2 корня из 3 окей, далее найдем АС она же является диагональю трапеции: АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4 готово, осталось посчитать: S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
300:4=75, так как стороны ромба равны
2. диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам, следовательно треугольник АВО - прямоугольный и АО:BO=1,5:2
Пусть х - коэффициент пропорциональности
Тогда по теореме Пифагора
АВ^2=АО^2+BO^2
75^2=(1,5х)^2+(2x)^2
х=30 и х=-30( не подходит, так как значение отрицательное)
тогда диагонали ромба
АС=90 , а BD=120
Площадь ромба
S= 0,5 * АС*ВD=0,5*90*120=5400
с другой стороны площадь ромба
S=АВ*H
5400=75*h, где h - высота
h=5400/75
h=72
ответ 72