Проведём из вершины В высоту ВН. Она проходя через треугольник АВС будет являться искомым диаметром. Так как ∆АВС равнобедренный, то углы при основании будут равны, поэтому <А=<С=60°. Сумма углов треугольника составляет 180°, поэтому
<В=180–60–60=60°. Все углы этого треугольника равны, поэтому он является равносторонним и АВ=ВС=АС=5√3см.
Радиус описанной окружности вокруг равностороннего треугольника вычисляется по формуле:
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
ответ: диаметр ВН=10см
Объяснение:
Проведём из вершины В высоту ВН. Она проходя через треугольник АВС будет являться искомым диаметром. Так как ∆АВС равнобедренный, то углы при основании будут равны, поэтому <А=<С=60°. Сумма углов треугольника составляет 180°, поэтому
<В=180–60–60=60°. Все углы этого треугольника равны, поэтому он является равносторонним и АВ=ВС=АС=5√3см.
Радиус описанной окружности вокруг равностороннего треугольника вычисляется по формуле:
R=a/√3, где а - сторона треугольника:
R=5√3÷√3=5см;. R=BO=OH
Тогда диаметр ВН=2×5=10см