Сумма углов треугольника ABC равна 180°. Тогда исходя из соотношения 2:3:7 составим уравнение
2х + 3х + 7х = 180
12 х = 180
х = 15
Угол BAC = 2*15 = 30 градусов|
Угол ABC = 3*15 = 45 градусов} в сумме
180°
Угол ACB = 7*15 = 105 градусов|
Рассмотрим прямоугольник MNKP
NP = MK т.к. диагонали прямоугольника равны
OM = OK = NO = OP т.к. диагонали параллелограмма в точке пересечения делятся поровну
Рассмотрим треугольник NOM
NO = OM из этого следует, что треугольник NOM равнобедренный, с основанием NM
угол MNO = угол NMO т.к. углы при основании равнобедренного треугольника равны
угол MNO + угол NMO + угол NOM = 180 градусов
= угол MNO + угол NMO + 64 = 180 градусов
180 - 64 = 116
116 : 2 = 58
Угол OMN = 58 градусов
Рассмотрим прямоугольник MNKP
Углы прямоугольника равны 90 градусов
угол OMN + угол OMP = 90 градусов
угол OMN + 58 = 90 градусов
90 - 58 = 32
ответ: Угол OMP равен 32 градусам
Рассмотрим прямоугольный треугольник АВС, где угол А прямой. Вписанная окружность касается катета АВ в точке М, где АМ=2, МВ=8. Точка касания окружности со стороной АС точка Р, центр окружности точка О. Линии проведенные к точкам касания из цетра вписанной окружности перпендикулярны сторонам и являютс радиусами. Тогда тогда АМОР является квадратом и стороны равны 2. АМ=АР как касательные к окружности, проведенные из одной точки. Рассмотрим треугольник ВМО. у него угол М прямой, МВ и МО являются катетами. Отношение МО к МВ равно тангенсу угла МВО (tg альфа).Значит тангенс МВО=2/8=1/4. Так как центр вписанной окружности лежит на пересечением биссектрис, то ВО является биссектрисой угла АВС и равен 2МВО. Найдем тагенс АВС по формуле двойного угла. он равен 2tg альфа деленное на
1-tg^2 альфа. Подставив значения получаем 8/15. A в треугольнике АВС катет АВ=2+8=10, tg АВС=8/15, найдем катет АС=АВ*tgАВС=10*8/15=80/15=16/3=5 1/3, а гипотенузу находим по теореме Пифагора.ВС^2=10^2+(16/3)^2=1156/9
ВС=34/3=11 1/3 Получаем АВ=10, АС=5 1/3, а ВС=11 1/3
30 ,45, 105,
Объяснение:
180сумма углов треугольника 180/2+3+7=15
15*2=30
15*3=45
15*7=105