Объяснение:
1)Разность основании трапеции 6см.
Длина средней линии 10см.
Найдите длины основании.
1)Нижнее основание обозначим как а, верхнюю b.
Разность основании а-b=6см
Средняя линия m=(a+b)/2=10см
Строим систему уравнении
{ a-b=6
(a+b)/2=10
Отсюда длина нижнего основания будет
a=b+6
Верхнего
b=2×10-a
Находим длину верхнего основания
b=20-(b+6)
b=20-b-6
2b=14
b=14/2=7см
Верхнее основание b=7см
Нижнее будет.
а=20-7=13см
1). Трапецияның төменгі табаның а , жоғарғы табаны b деп алайық.
Табандар айырмасы а-b=6см
Орта сызығы m=(a+b)/2=10см
Сонда мынадай теңдеулер жүйесі шығады
{ a-b=6
(a+b)/2=10
Бұдан төменгі табаны
a=b+6
Жоғарғы табан
b=2×10-a
Теңдеуді шешіп жоғарғы табан мәнін табамыз
b=20-(b+6)
b=20-b-6
2b=14
b=14/2=7см
Жоғарғы табан b=7см
Төменгі табан мәні а=20-7=13см
1. Сумма одной пары внешних углов треугольника равна 194°, а сумма другой пары внешних углов - 321°. Найдите внутренние углы треугольника.
Пусть данный треугольник АВС.
Сумма внешних углов при вершине А=321°. Внешние углы при одной вершине вертикальные и равны, тогда каждый из них равен 321°:2=160,5°
Сумма внешнего и внутреннего угла треугольника, смежного с ним, равна 180°. ∠ВАС=180°-160,5°=19,5°
Сумма внешних углов при вершине С=194°, а каждый из них равен 194:2=97°. Смежный с ним внутренний ВСА=83°
Угол АВС=180°-(19,5°+83°)=77,5°
Углы ∆ АВС равны 19,5°; 87°; 77,5°
---------------------
2. Биссектриса равнобедренного треугольника, проведенная из вершины при основании, образует с основанием угол, равный 34 градуса. Какой угол образует медиана, проведенная к основанию, с боковой стороной?
Пусть данный треугольник АВС. АМ - биссектриса угла А, ВН - медиана проведенная к АС.
Углы при основании равнобедренного треугольника равны, и
∠ А=∠С=34°•2=68°.
∠ АВС=180°-2•68°=44°
Медиана равнобедренного треугольника, проведенная к основанию, еще и его высота и биссектриса. Она делит угол пополам. Угол, образованный медианой с боковой стороной, -∠ НВА=44°:2=22°