task/29640004 Напишите уравнение прямой, проходящей через две данные точки: С(2;5) и D(5;2) .
y = k*x +b → уравнение прямой
y₁ =k*x₁ +b → условие (прямая проходит через точку A(x ₁ ; y₁ ) ;
y - y₁= k*(x -x₁) → уравнение прямой , проход. через точку A(x ₁ ; y₁ ) ;
y₂ - y₁= k*(x₂ -x₁) → условие (прямая проходит через точку B(x₂ ;y₂ ) ;
уравнение прямой , проход. через две точки A(x ₁ ; y₁ ) и B(x₂ ;y₂) :
(y - y₁) / (y₂ - y₁)=(x -x₁) / (x₂ - x₁) .
(y - 5) / (2 - 5)=(x -2) / (5 - 2 ) ⇔ y - 5= - (x -2) ⇔ y = - x +7 .
ответ : y = - x +7 .
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D
По теореме Пифагора DC₁²=6²+8²=100
DC₁=10
РК- средняя линия треугольника DCC₁
PK=5
PT|| AD и PT || ВС
РТ=4
AD⊥CD ⇒ РТ⊥СD
AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК
РТ⊥ РК
Аналогично, МТ ⊥МК
Сечение представляет собой прямоугольник
Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18