Обозначим за х меньшую сторону параллелограмма. Тогда его большая сторона равна 4х. Периметр равен сумме всех сторон, значит: х + 4х + х + 4х = 20√2 10х = 20√2 х=2√2 Большая сторона в 4 раза больше, значит она равна 4х2√2 = 8√2 Площадь параллелограмма равна произведению его основания на высоту: S = 8√2 x h, где h - высота. Построим высоту. Мы получаем прямоугольный треугольник, у которого известен по условию один из углов - это 45°. Известно, что синус угла прямоугольного треугольника равен отношению его противолежащего катета к гипотенузе. Противолежащий катет в данном случае - это наша высота h, которую мы не знаем. Гипотенуза треугольника - это меньшая сторона параллелограмма, т.е. 2√2. Синус угла 45° равен √2 / 2. sin 45 = h / 2√2. Отсюда находим h: h = sin 45 x 2√2 = √2/2 x 2√2 = √2 x √2 = 2 Находим площадь параллелограмма: S = h x 8√2 = 2 x 8√2 = 16√2
Обозначим за х меньшую сторону параллелограмма. Тогда его большая сторона равна 4х. Периметр равен сумме всех сторон, значит: х + 4х + х + 4х = 20√2 10х = 20√2 х=2√2 Большая сторона в 4 раза больше, значит она равна 4х2√2 = 8√2 Площадь параллелограмма равна произведению его основания на высоту: S = 8√2 x h, где h - высота. Построим высоту. Мы получаем прямоугольный треугольник, у которого известен по условию один из углов - это 45°. Известно, что синус угла прямоугольного треугольника равен отношению его противолежащего катета к гипотенузе. Противолежащий катет в данном случае - это наша высота h, которую мы не знаем. Гипотенуза треугольника - это меньшая сторона параллелограмма, т.е. 2√2. Синус угла 45° равен √2 / 2. sin 45 = h / 2√2. Отсюда находим h: h = sin 45 x 2√2 = √2/2 x 2√2 = √2 x √2 = 2 Находим площадь параллелограмма: S = h x 8√2 = 2 x 8√2 = 16√2
2x-8
Объяснение:
2x-4/x
Объяснение:
AD=х+6+х-6=2х
Оскільки MO=ON, то ON=х-2
MN=х-2+х-2=2х-4
Середня лінія трапеції дорівнює сумі основ поділеній на 2.
MN=(AD+BC)/2
2MN=AD+BC
2(2x-4)=2x+BC
4x-8-2x=BC
BC=2x-8