М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
draft1challenge
draft1challenge
11.04.2021 21:19 •  Геометрия

Радіус кола, вписаного у квадрат, дорівнює 10 см. Знайдіть радіус кола, описаного навколо цього квадрата

👇
Ответ:
ismaildior200920
ismaildior200920
11.04.2021

Знайдемо сторону квадрата через формулу вписаного кола у цей квадрат:

r = \frac{a}{2} = a = 2r\\a = 2\cdot 10 = 20 \:\: (cm)

Підставимо значення у формулу радіуса описаного кола навколо цього квадрату:

R = \frac{a}{\sqrt{2} } \\R = \frac{20}{\sqrt{2} } = 10\sqrt{2} \:\:(cm)

Відповідь: радіус кола, описаного навколо квадрата, рівний 10√2 см.

4,5(100 оценок)
Открыть все ответы
Ответ:
Пусть О - точка пересечения медиан треугольника АВС. Треугольники AOP и BOM подобны по двум  углам (два угла равны по условию, еще два угла вертикальные). Тогда:
\frac{AO}{OB} = \frac{PO}{OM}
Так как медианы точкой пересечения делятся в отношении 2:1, то:
\frac{ \frac{2}{3} AM}{ \frac{2}{3} BP} = \frac{\frac{1}{3}BP}{\frac{1}{3}AM}
\\\
\frac{ AM}{ BP} = \frac{BP}{AM}
\\\
AM^2=BP^2
\\\
\Rightarrow AM=BP=1
Если медианы, проведенные к двум сторонам треугольника равны, то и сами стороны также равны. Значит, АС=ВС и треугольник АВС равнобедренный.
Рассмотрим треугольник АМС. По теореме косинусов, учитывая соотношение АС=2СМ, получим:
AM^2=AC^2+CM^2-2\cdot AC\cdot CM\cdot\cos ACB
\\\
1^2=(2CM)^2+CM^2-2\cdot 2CM\cdot CM\cdot0.8
\\\
1=4CM^2+CM^2-3.2CM^2
\\\
1=1.8CM^2
\\\
CM^2= \frac{1}{1.8} = \frac{5}{9} 
\\\
CM= \frac{ \sqrt{5} }{3}
Следовательно стороны в два раза больше: AC=BC= \frac{2 \sqrt{5} }{3}
Тогда площадь треугольника найдем как половину произведения двух его сторон на синус угла между ними:
S= \frac{1}{2} \cdot AC\cdot BC\cdot \sinACB
\\\
S= \frac{1}{2} \cdot AC^2\cdot \sqrt{1-\cos ACB} 
\\\
S= \frac{1}{2} \cdot ( \frac{2 \sqrt{5} }{3})^2\cdot \sqrt{1-0.8}=\frac{1}{2} \cdot \frac{4\cdot5 }{9} \cdot \frac{3}{5} = \frac{2}{3}
ответ: 2/3
4,4(4 оценок)
Ответ:
vika05lida811
vika05lida811
11.04.2021
Давайте сначала рассмотрим две точки и посмотрим, при каких условиях прямая будет равноудалена от них (первый рисунок). Я утверждаю, что так будет, если или она параллельна отрезку, соединяющему эти точки, или проходит через середину этого отрезка.

Доказательство несложно: если прямая параллельна отрезку, то расстояние от неё до любой точки отрезка одинаково; в противном случае она пересекает прямую, содержащую отрезок. Но вне отрезка она пересечь не может - см. нижний рисунок, отрезки AHa, BHb не равны, поэтому она пересекает в некоторой точке C, принадлежащей отрезку (смотрим на верхний рисунок).
Опустим из точек перпендикуляры на прямую. Прямая равноудалена от точек, поэтому AHa = BHb. Кроме того, равны углы ACHa и BCHb - вертикальные. Отсюда прямоугольные треугольники ACHa и BCHb равны по катету и острому углу, и AC = CB.

Теперь возвращаемся к задаче. Будем думать, что нам даны вершины треугольника ABC. Искомая прямая не может быть параллельна более, чем одной стороне треугольника, две стороны она точно пересекает в середине. Значит, это средняя линия треугольника. Легко проверить, что средняя линия удовлетворяет условию.

ответ. (Второй рисунок) Искомая прямая - средняя линия треугольника, образованного данными точками. Задача имеет три решения - по числу средних линий.
Даны три точки, не лежащие на одной прямой. проведите прямую, равноудалённую от этих точек. сколько
Даны три точки, не лежащие на одной прямой. проведите прямую, равноудалённую от этих точек. сколько
4,5(32 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ