Довжини основи CD, діагоналі BD і бокової сторони AD трапеції ABCD рівні між собою і дорівнюють p. Довжина бокової сторони BC дорівнює q. Знайти довжину діагоналі AC.
РЕШЕНИЕ: Если через х обозначить меньшую сторону трапеции, то вся площадь будет состоять из суммы двух площадей фигур, сотставляющих данную прямоугольную трапецию: 1) площади прямоугольника = 9х 2) площади (прилегающаго к прямоугольнику) треугльника = 0,5*9*(20 - х) = = 4,5*(20-х) = 90 - 4,5х Итого, общая площадь равна = 9х + 90 - 4,5х = 90 - 4,5х. Величину х найдем, используя теорему Пифагора: 9^2 + (20-x)^2 = 15^2, 81 + (20-x)^2 = 225, (20-x)^2 = 225-81 =144 = (+,-12)^2, a) 20-x = 12, x = 8 b) 20 - x = -12, x = 32, что отбрасываем, т. к. по условию х - меньшее основание, а большее равно 20. Окончательно: площадь = 90 - 4,5х = 90 - 4,5*8 = 54 (см. кв)
Выразим, чему равны угла А и В треуг-ка АВС. Пусть <А = х, тогда <B=90-<A=90-x.Треугольники КАС и МВС равнобедренные по условию. Значит, углы при их основаниях КС и МС равны. <CKA=<KCA=<1, <CMB=<MCB=<2Выразим, чему равны углы 3 и 4 в этих треуг-ах:<3=180-<A=180-x<4=180-<B=180-(90-x)=90+xВыразим углы 1 и 2, зная, что сумма углов треугольника равна 180°:<1=(180-<3):2=(180-(180-x)):2=x:2<2=(180-<4):2=(180-(90+x)):2=(90-x):2<KCM=<1+90+<2<KCM=x:2 + 90 + (90-x):2 = 135°
Если через х обозначить меньшую сторону трапеции, то вся площадь будет состоять из суммы двух площадей фигур, сотставляющих данную прямоугольную трапецию:
1) площади прямоугольника = 9х
2) площади (прилегающаго к прямоугольнику) треугльника = 0,5*9*(20 - х) =
= 4,5*(20-х) = 90 - 4,5х
Итого, общая площадь равна = 9х + 90 - 4,5х = 90 - 4,5х.
Величину х найдем, используя теорему Пифагора: 9^2 + (20-x)^2 = 15^2,
81 + (20-x)^2 = 225, (20-x)^2 = 225-81 =144 = (+,-12)^2,
a) 20-x = 12, x = 8
b) 20 - x = -12, x = 32, что отбрасываем, т. к. по условию х - меньшее основание, а большее равно 20.
Окончательно: площадь = 90 - 4,5х = 90 - 4,5*8 = 54 (см. кв)