Рассмотрим сечение комбинации тел плоскостью, проходящей через ось конуса и центр шара (Рис. 1). Для данного треугольника образующие SA=SB=L. Высота конуса SO=H. Радиус вписанного шара ОО₁=O₁F=r, a радиус основания конуса ОВ=R. Рассмотрим прямоугольный треугольник SOB. По свойству биссектрисы треугольника: SB/SO₁=OB/OO₁ ⇒ L/(H-r)=R/r. По теореме Пифагора: SB=√(SO²+OB²) ⇒ L=√(H²+R²). Таким образом: √(H²+R²)/(H-r)=R/r Подставляя различные комбинации соотношений получаем ответ. ответ: 1)В), 4)Б), 4)Д).
4,6(99 оценок)
Ответ:
01.11.2021
Значит так. Вспомним что такое равнобедренный треугольник и высота. Равнобедренный треугольник у которого боковые стороны равны и углы при основании равны. Высота - перпендикуляр проведённый из вершины к противоположной стороне. И он образует прямой угол. Приступим к задаче: Пусть треугольник ABC. AC-основание. т.к. треугольник равнобедренный, то AB=10 и BC=10 (AB и BC боковые стороны) Высота BH образует два прямоугольных треугольника ABH и BCH. Можно из треугольника ABH найти AH, по теореме пифагора. AB^2=BH^2+AH^2 выражаем AH^2 AH^2=AB^2-BH^2=100-64=36 AH=6 таким же образом находим HC в треугольнике HBC. т.к. треугольник равнобедренный то HC то же будет равно 6 AC=HC+AH=6+6=12 ОТвет: AC=12
Для данного треугольника образующие SA=SB=L. Высота конуса SO=H. Радиус вписанного шара ОО₁=O₁F=r, a радиус основания конуса ОВ=R. Рассмотрим прямоугольный треугольник SOB. По свойству биссектрисы треугольника:
SB/SO₁=OB/OO₁ ⇒
L/(H-r)=R/r.
По теореме Пифагора:
SB=√(SO²+OB²) ⇒ L=√(H²+R²).
Таким образом:
√(H²+R²)/(H-r)=R/r
Подставляя различные комбинации соотношений получаем ответ.
ответ: 1)В), 4)Б), 4)Д).