1. Треугольник прямоугольный, значит, один угол равен 90°. Тогда другой равен 90° - 30° = 60°. Катет, лежащий напротив угла в 30°, равен половине гипотенузы. Тогда гипотенуза равна 2•4,5см = 9 см.
2. Найдём другой угол прямоугольного треугольника. Она равен 90° - 45° = 45°. Тогда у данного треугольника два равных угла => она равнобедренный и его катеты равны. Тогда каждый из них равен 34см•1/2 = 17 дм.
3. Нельзя, т.к. у равных треугольников соответственно равны все элементы. У первого треугольника угол равен 35°. У другого треугольника соответственные ему угол равен 90° - 60° = 30°. Как видно, углы не равны, значит, треугольники тоже не равны.
Дано:
АС=7 см;
АВ=25 см;
ВС=24 см.
СО – высота, проведенная к АВ.
Высота, пересекаясь со стороной, к которой проведена, образует прямой угол.
То есть угол ВОС=90° и угол АОС=90°.
Следовательно ∆ВОС – прямоугольный с прямым углом ВОС и ∆АОС – прямоугольный с прямым углом АОС.
Пусть АО=х, тогда ВО=АВ–АО=25–х.
По теореме Пифагора в прямоугольном треугольнике ВОС:
ВС²=ВО²+СО²
СО²=ВС²–ВО²
СО²=24²–(25–х)²
СО²=576–625+50х–х²)
СО²=–х²+50х–49 (Ур 2)
По теореме Пифагора в прямоугольном треугольнике АОС:
АС²=АО²+СО²
СО²=АС²–АО²
СО²=7²–х²
СО²=49–х² (Ур 2)
Тогда можем составить уравнение, объединив Ур 1 и Ур 2, получим:
–х²+50х–49=49–х²
50х=98
х=1,96
Тоесть АО=1,96 см.
Подставим значение АО и известное значение АС в уравнение СО²=АС²–АО², получим:
СО²=49–3,8416
СО²=45,1584
СО=6,72 см.
ответ: 6,72 см.