По 1 аксиоме Гильберта плоскость АВС существует,
По 3 – М и К и , соответсвенно Х принадлежат этой плоскости .
Аксиоматика Гильберта
1. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует плоскость α, которой принадлежат эти три точки. Каждой плоскости принадлежит хотя бы одна точка.
2. Каковы бы ни были три точки A, B и C, не принадлежащие одной прямой, существует не более одной плоскости, которой принадлежат эти точки.
3. Если две принадлежащие прямой a различные точки A и B принадлежат некоторой плоскости α, то каждая принадлежащая прямой a точка принадлежит указанной плоскости.
4. Если существует одна точка A, принадлежащая двум плоскостям α и β, то существует по крайней мере ещё одна точка B, принадлежащая обеим этим плоскостям.
5. Существуют по крайней мере четыре точки, не принадлежащие одной плоскости.
найдем координаты середины диагоналей четырехугольника ABCD:
середина диагонали АС
x=(0+5)/2=2.5
y=(1+1)/2=1
(2.5;1)
середина диагонали BD
x=(4+1)/2=2.5
y=(3+(-1))/2=1
(2.5;1)
таким образом диагонали четырехугольника пересекаются в точке, что делит их пополам, поэтому за признаком парарлелограмма четырехугольник АВСD - парареллограм
найдем длины диагоналей
AC=((5-0)^2+(1-1)^2)=5
BD=((4-1)^2+(-1-3)^2)=5
диагонали параллелограма ABCD равны АC=BD, за признаком прямоугольника ABCD- прямоугольник. Доказано
Подробнее - на -
Объяснение:
ответ:tcnm Есть свойства с которых можно высчитать угол
Объяснение:
СУС- сторона угол сторона
треугольник с прямым углом имеет свойство углов 30-60-90