Дано: ΔCBA,CA=BC. Основание треугольника на 30 см меньше боковой стороны. Периметр треугольника CBA равен 330 см. Вычисли стороны треугольника. (В первое окошко введи число, во второе единицы измерения, в ответ нужно записать в см!) AB=
Формула: S=(n-2)\times 180, где S – сумма внутренних углов многоугольника, n – число сторон многоугольника. Цифра «180» – это сумма углов треугольника, а n-2 – это число треугольников, на которые можно разбить многоугольник. Таким образом, формула вычисляет сумму углов треугольников, на которые можно разбить многоугольник. Этот метод применим к правильным и неправильным многоугольникам. Суммы внутренних углов правильного и неправильного многоугольников с одинаковым число сторон равны. Все углы правильного многоугольника равны. Углы неправильного многоугольника имеют разные значения, но их сумма равна сумме углов правильного многоугольника. Например, если дан шестиугольник, то число сторон равно 6. Для того чтобы вичеслить многоугольник из числа сторон вычтите 2, а затем результат умножьте на 180. Вы получите суммe внутренних углов многоугольника (в градусах).
В любом треугольнике можно провести 3 медианы. Все они пересекаются в одной точке, в центре (центре тяжести) треугольника.
AK = KC , BK — медиана ABC ,
О — центр A 1B 1C 1 .
Биссектриса треугольника — отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой на противолежащей стороне.
Обратите внимание, что биссектриса угла — это луч, делящий угол на два равных, а биссектриса треугольника — это отрезок, часть луча, ограниченная стороной треугольника.
BK — биссектриса ABC ,
A 1О — биссектриса C 1A 1B 1 .
В каждом треугольнике можно провести 3 биссектрисы, которые пересекаются в одной точке, обычно обозначаемой латинской буквой I .
Точка пересечения биссектрис треугольника ( I ) — центр вписанной в треугольник окружности.
Высота треугольника — перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону.
3x-30=330
x=120
основание 120
боковые стороны 150
Объяснение: