А) Пирамида правильная, значит в основании лежит квадрат. Боковое ребро пирамиды составляет с высотой и половиной диагонали основания прямоугольный треугольник, в котором высота (катет) лежит против угла 30° и значит равна половине бокового ребра (гипотенуза). h=5см. б) Диагонали квадрата точкой пересечения делятся пополам под прямым углом. Половину диагонали найдем по Пифагору: d=√(10²-5²)=√75=5√3см Сторону найдем по Пифагору: а=√(75+75)=√150=5√6см. ответ: высота пирамиды 5см, сторона основания 5√6см.
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
Пусть a - сторона треугольника
S=pr, где p=3a/2 (полупериметр)
S=3ar/2
S=(√3*a^2)/4 - площадь правильного треугольника
Приравняем значения S:
(3ar)/2=(√3*a^2)/4
Отсюда a=12r/(2*√3)=12*(√3/2) / 2*√3 = 3
ответ: 3