Відрізок AB — перпендикуляр до площини а (точка в — основа перпендикуляра), а точка с лежить уплощині а. Знайдіть відстань від точки А до площини а, якщо:
Назовем угол в 90° буквой L. Соответственно, получится прямоуголный треугольник MKL. Две стороны у нас известны, а именно MK=26см (гипотенуза) и LK=10см (второй катет), по теореме Пифагора можем найти сторону ML (квадрат неизвестного катета равен разности квадрата гипотенузы и квадрата второго катета):
Из двух данных нам треугольников можно образовать один прямоугольный треугольник - MLN, у которого известна пока лишь одна сторона - ML, но можно найти вторую - LN (стороны LK и KN дадут в сумме сторону LN):
LN=LK+KN; LN=10+13; LN=23см.
Теперь у нас известны все стороны, что бы найти площадь треугольника MKN, которая расчитывается по формуле S=1/2·a·Ha, то есть одна вторая умноженная на основание и высоту, проведенную к основанию:
Проведём сечение пирамиды через рёбра BS и ES. Плоскость этого сечения будет перпендикулярной к заданной плоскости сечения, так как диагональ АС перпендикулярна диагонали ВЕ. В сечении получим 2 треугольника: BSE и KME. Ребро BS как гипотенуза равно 6√2. КМ - это линия наибольшего наклона плоскости. Отрезок ВК на стороне ВЕ равен половине стороны шестиугольника как катет, лежащий против угла в 30 градусов. Отношение ВК : ВЕ равно отношению SM : SE (3 / 12 = (3/√2) / (6√2), или 1/4 = 1/4. Отсюда вывод: треугольники BSE и KME подобны. Отрезок КМ, как и BS, имеет наклон к плоскости основы под углом 45 градусов.
Сечение шестиугольной пирамиды плоскостью, проходящей через диагональ АС под углом 45 ° представляет собой пятиугольник, состоящий из трапеции и треугольника.
У трапеции нижнее основание АС равно AC = 2*6*cos30° = 2*6*(√3/2) = 6√3. Верхнее основание трапеции определяется из условия пересечения заданной плоскости с рёбрами SD и DF. В плоскости ВSE верх трапеции - точка Н. Высоту трапеции КН найдём из треугольника КНF₁, образованного пересечением заданной плоскости и плоскости, проходящей чрез рёбра SD и DF. В этом треугольнике известно основание КF₁ = 3 + 3 = 6 и угол НКF₁ = 45°. Поэтому он подобен треугольнику F₁BS по двум углам. Сторона F₁B равна 6 + 3 = 9. Коэффициент подобия равен 6/9 = 2/3.Тогда КН = (2/3)*BS = (2/3)*6√2 = 4√2. Высота точки Н равна 4√2*sin 45° = 4√2*(√2/2+ = 4. Верхнее основание трапеции определяется из условия подобия треугольников SH₁H₂ и SDF по высотам от вершины S, равными 2 и 6. H₁H₂ = DF*(2/6) = 6√3*(1/3) = 2√3.
Тогда S₁ = (1/2)*((6√3)+(2√3))*4√2 = 16√2.
У треугольника ВМЕ высота точки М равна 6*(9/12) = 4,5. Отсюда высота треугольника H₁МH₂ равна (4,5 - 4)/sin 45° = (1/2)/(√2/2) = (1/2)√2. Тогда S₂ = (1/2)*(2√3))*((1/2)√2) = (1/2)√6.
Площадь сечения равна: S = S₁ + S₂ = (16√6) + (√6/2) = (33√6)/2 = 40.41658.
Площадь треугольника MKN = 156 (см)²
Объяснение:
Назовем угол в 90° буквой L. Соответственно, получится прямоуголный треугольник MKL. Две стороны у нас известны, а именно MK=26см (гипотенуза) и LK=10см (второй катет), по теореме Пифагора можем найти сторону ML (квадрат неизвестного катета равен разности квадрата гипотенузы и квадрата второго катета):
ML²=MK²-LK²; ML²=26²-10²; ML²=676-100; ML=√576; ML=24см.
Из двух данных нам треугольников можно образовать один прямоугольный треугольник - MLN, у которого известна пока лишь одна сторона - ML, но можно найти вторую - LN (стороны LK и KN дадут в сумме сторону LN):
LN=LK+KN; LN=10+13; LN=23см.
Теперь у нас известны все стороны, что бы найти площадь треугольника MKN, которая расчитывается по формуле S=1/2·a·Ha, то есть одна вторая умноженная на основание и высоту, проведенную к основанию:
Smnk=1/2·13·24=1/2·312=156 см²