Признаки равенства прямоугольных треугольников
Признаки равенства прямоугольных треугольников позволяют доказать равенство треугольников всего по двум парам элементов.
Признак равенства прямоугольных треугольников по двум катетам
priznak ravenstva pryamougolnyih treugolnikov 1
Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и гипотенузе
priznak ravenstva pryamougolnyih treugolnikov 2
Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства по гипотенузе и острому углу
priznak ravenstva pryamougolnyih treugolnikov 3
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и острому углу
priznak ravenstva pryamougolnyih treugolnikov 4
Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Объяснение:
Диагонали относятся как 5 : 12 - это означает, что d1=АС=5х, d2=ВD=12х ⇒ 480=1/2*5х*12х ⇒ 480=1/2*60х² ⇒
480=30х² ⇒ х²=16 ⇒ х=4 и х= -4 (игнорируем, т.к. сторона не может иметь отрицательное значение) ⇒ d1=АС=5*4=20, d2=ВD=12*4=48
Диагонали ромба пересекаются под углом=90° и точкой пересечения О делятся пополам ⇒ стороны прямоугольного ΔАОВ будут равны: АО=10 и ВО=24. По теореме Пифагора находим сторону ромба: АВ²=АО²+ВО²=10²+24²=100+576=676 ⇒АВ=26
Тогда Р ромба = 4*АВ = 4* 26 = 104.
ответ: 104 см