Обозначим длину биссектрисы через х. один из острых углов через а , второй тогда 90-а. биссектрисса делит треугольник на два. теорема синусов для обоих треугольников. х/sin a = 15/ sin 45. x/ sin(90-a) = 20/ sin 45 sin 90-a= cos a откуда 15 sin a = 20 cos a tg a = 4/3 гипотенуза 35 катеты 28 и 21 пифагоров треугольник 3 4 5 с коэффициентом подобия 7. опустим высоту на гипотенузу. если tg a = 4/3 , то sin a = 4/5 cos a = 3/5. опять же из пифагорова треугольника. гипотенуза поделиться высотой на отрезки 21 * cos a = 12.6 28* cos(90-a)= 28* sin a= 22.4
Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов (c^2 = a^2 + b^2). Теорема об угле в 30 градусов: катет, лежащий против угла в 30 градусов, равен половине гипотенузы. Площадь прямоугольного треугольника равна полупроизведению его катетов. (три вышеуказанные теоремы относятся к прямоугольным треугольникам). Площадь любого треугольника равна половине произведения его основания на высоту. Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы. Если в треугольнике углы при основании равны, то этот треугольник - равнобедренный (и наоборот). Если в треугольнике все углы равны, то этот треугольник - равносторонний. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины. В равностороннем треугольнике высоты являются серединными перпендикулярами к сторонам.
один из острых углов через а , второй тогда 90-а.
биссектрисса делит треугольник на два.
теорема синусов для обоих треугольников.
х/sin a = 15/ sin 45.
x/ sin(90-a) = 20/ sin 45
sin 90-a= cos a
откуда
15 sin a = 20 cos a
tg a = 4/3
гипотенуза 35 катеты 28 и 21
пифагоров треугольник 3 4 5 с коэффициентом подобия 7.
опустим высоту на гипотенузу.
если tg a = 4/3 , то sin a = 4/5 cos a = 3/5.
опять же из пифагорова треугольника.
гипотенуза поделиться высотой на отрезки
21 * cos a = 12.6
28* cos(90-a)= 28* sin a= 22.4