Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
petruk66
29.03.2020
Геометрия
5 - 9 классы
ответ дан
1.Як називають точку рівновіддалену від усіх точок кола: вершиною чи центром?2. Як називають відстань від точки кола до його центра:перпендикуляром чи радіусом?
3.Як називають хорду, яка проходить через центр кола :діагональ чи діаметр?
4. Діаметр кола дорівнює 8см. Чи будь-який радіус кола дорівнює 4см?
5. Скільки спільних точок можуть мати коло і пряма?
6. Скільки спільних точок можуть мати два кола?
7. Що більше:відстань від центра кола до дотичної чи радіус кола?
8. Скільки різних дотичних до кола можуть провести через точку, що лежить поза колом?
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ
3,6/5
9

LymarIvan
почетный грамотей
717 ответов
485.8 тыс. пользователей, получивших
1. центр
2. радіус
3. діаметр
4. так, бо r=D/2
5. жодну, одну або дві
6. жодну, одну або дві
7. радіус кола, проведений в точку дотику, перпендикулярний до дотичної, а довжина цього перпендикуляра якраз є відстанню між точкою (центром) і прямою (дотичною), тобто дорівнює радіусу отже, вони рівні
8. дві
вроде так
это из знания .ком