М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
оксана755
оксана755
19.02.2021 22:35 •  Геометрия

В прямоугольных треугольниках ABC (угол C - прямой) и DEF (угол F - прямой) AB = DE, AC=15 см ; BC=8 см ; угол ABC=32 градуса ; угол FDE=58 градусов. Найдите длину DF

👇
Открыть все ответы
Ответ:
Abigael
Abigael
19.02.2021

Проведём сечение пирамиды через ось и боковое ребро SC.
Середина ребра SC это точка Е. Пересечение перпендикуляра  к этому ребру через точку Е с основанием это точка К, находящаяся на высоте основания СД. Получим прямоугольный треугольник ЕКС, в котором известна сторона ЕС = (1/2) SC = (1/2)*10 = 5.
В другом треугольнике SOC сторона ОС равна (2/3) высоты основания. Для правильного треугольника АВС этот отрезок равен (2/3)*12*cos30 = (2/3)*12*(√3/2) = 4√3.
Косинус угла С равен ОС/SC = 4√3/10 = 2√3/5.

Теперь можно определить гипотенузу СК в треугольнике ЕКС:

CК = ЕС/cosC = 5/(2√3/5) = 25/(2√3).

Так как СК лежит в плоскости основания на его высоте СД, то равные отрезки СР и СМ равны:

СР = СМ = СК / cos 30 = 25/(2√3) / (√3/2) = 25/3 = 8(1/3).

 В плоскости боковой грани ASC линией пересечения её с заданной секущей плоскостью будет отрезок ЕМ. Аналогично в плоскости грани ВSC это линия ЕР.

 Длину этих равных отрезков (они являются боковыми сторонами в треугольнике РЕМ, который и есть фигурой пересечения пирамиды с заданной плоскостью), находим по теореме косинусов по двум сторонам СЕ и СМ и косинусу угла между ними.

 Косинус угла α при основании боковой грани равен 6/10 = 3/5.

Тогда ЕМ = ЕР = √(ЕС² + СМ² - 2*ЕС*СМ*cos α) = 

√(5² + (25/3)² - 2*5*(25/3)*(3/5)) = 

= √((25*9 + (625/9) - 9*50)/9)  = √400 / 3 = 20/3.

Отрезок РМ находим из пропорции подобных треугольников САВ и СРМ:

РМ = СМ = 25/3 = 8(1/3).

ответ: Периметр треугольника, образованного сечением пирамиды плоскостью, перпендикулярной ребру SC в его середине, равен:

Р = (25/3) + 2*(20/3) = (25 + 40) / 3 = 65/3 = 21(2/3).

4,4(23 оценок)
Ответ:
qwerty878
qwerty878
19.02.2021
[_Привет всем!_]
ответ на вопрос.
Дано: (треугольник)АВС- р/б, АС-основание.
Угол В=129°
Найти: Угол А, Угол С.
Решение.
1) Угол В=129°(по усл.)Угол А+ угол В+ угол С=180° (по св-ву о сумме углов треугольника)=> Угол А+ Угол С= 180°- Угол В= 180°- 129°=51°
2) Угол А+ Угол С= 51°(из 1).(треугольник)АВС- р/б (по усл.)=> Угол А= Угол С (как углы при основании)=> Угол А=Угол С= 51°:2= 25,5°.
ответ. Угол А=25,5°, угол С=25,5°.
Надеюсь, вам понравилась предоставленная информация. Удачи в геометрии, обращайтесь!=^.^=
4,5(82 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ