Основание прямого параллелепипеда ромб с меньшей диагональю 12 см большая диагональ параллелепипеда равна 16 корней из 2 и образует с боковым ребром угол 45 градусов Найдите площадь полной поверхности параллелепипеда
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
По теореме синусов: BC : sinA = AB : sin C AB = BC · sinC / sinA = BC · sin72° / sin64° ≈ 4,125 · 0,9511 / 0,8988 ≈ 4,4 м S = 1/2 · AB · BC · sinB ≈ 1/2 · 4,4 · 4,125 · sin44° ≈ 9,075 · 0,6947 ≈ 6,3 м²
2. Используя теорему синусов решите треугольник АВС, если АВ = 8 см, ∠А = 30°, ∠В = 45°. ∠С = 180° - ∠A - ∠B = 180° - 30° - 45° = 105° AB : sinC = AC : sinB AC = AB · sinB / sin C = 8 · sin45° / sin105° ≈ 8 · 0,7071 / 0,9659 ≈ 5,9 см
AB : sinC = BC : sinA BC = AB · sinA / sinC = 8 · sin30° / sin105° ≈ 8 · 0,5 / 0,9659 ≈ 4,1 см
3. Используя теорему косинусов решите треугольник АВС, если АВ = 5 см, АС = 7,5 см, ∠С = 135°. В условии очевидно ошибка, так как напротив большего угла (∠С) должна лежать большая сторона (АВ), а АВ не большая. По аналогии с вариантом 1, изменим условие: ∠А = 135°
Объяснение:
АВСД -прямоугольная трапеция ,ВС=4√2 , ∠А=45°, ∠Д=90°, АС-биссектриса ∠А.
1)Т.к АС-биссектриса, то ∠САД=∠САВ.
2)Т.к. АД║ВС ( основания трапеции), АС-секущая, то ∠ДАС=∠ВСА , как накрест лежащие. Значит в ΔАСВ есть два равных угла по 22,5° ⇒ ΔАСВ-равнобедренный и ВС=ВА=4√2.
3)Пусть ВК⊥АД, тогда ΔВКА-прямоугольный и равнобедренный , т.к. ∠КВА=90°-45°=45°. Обозначим равные катеты через х. По т. Пифагора :х²+х²=(4√2)², 2х²=16*2, х=4, КА=ВК=4.
3)Т.к. ВК⊥АД, то ДК=4√2.
4)ΔДВК-прямоугольный, по т. Пифагора ДВ²=КВ²+КД²,
ДВ²=16+16*2,
ДВ²=3*16
ДВ=4√3