37,5 см^2
Объяснение:
Скорее всего, опечатка в условии задания.
Если угол А = 45⁰, то угол В также 45⁰, т.к. треугольник ABK - прямоугольный и сумма всех углов 180⁰.
Так как угол A = углу B, то треугольник - равнобедренный и AK = BK = 5;
Из этого имеем, что BCDK - квадрат со сторонами 5.
S(BCDK) = 5^2 = 25 см^2
Найдем площадь треугольника исходя из того, что он равнобедренный с катетами 5, что будет составлять половину от площади квадрата.
S(ABK) = S(BCDK)/2 = 25/2 = 12,5 см^2
S(ABCD) = 25 + 12,5 = 37,5 см^2
3. В окружность вписан треугольник ABC так, что АВ - диаметр окружности. Найдите углы треугольника, если: а) ВС=134°
АВ - диаметр - > < C=90 < A=67 (вписанный угол) < B=180-90-67=23
Билет № 3
3. Сумма двух противоположных сторон описанного четырехугольника равна 12 см. а радиус вписанной в него окружности равен 5 см. Найдите площадь четырехугольника.
Так как четырехугольник описан вокруг окружности, то сумма других сторон равна 12
S=p*r=(a+b+c+d)*r/2=24*5/2=60
Билет № 4
3. Точка касания окружности, вписанной в равнобедренный треугольник, делит одну из боковых сторон на отрезки, равные 3 см и 4 см. считая от основания. Найдите периметр треугольника.
Дан треугольник ABC. AB=BC. M - точка касания вписанной окружности стороны АВ. N - точка касания вписанной окружности стороны ВC. K - точка касания вписанной окружности стороны АC. AM=3. MB=4.
В соответствии со свойством касательных, проведенных из одной точки к окружности
AM=AK CK=CN BM=BN
P=3+3+4+4+3+3=20