1. Обозначим точки пересечения с прямой L: А1 и В1 соответственно точкам А и В. Расстояние от точки до прямой определяется длиной перпендикуляра, следовательно, надо найти АА1. Когда сделаем чертеж, получим прямоугольную трапецию АА1ВВ1. Обозначим точку на прямой l M1. То есть: АА1, BB1 и MM1 ⊥ L, и AA1, MM1 и ВВ1 ║L.
2. Зная, что АМ=МВ (по условию) и АА1, ММ1 и ВВ1 ║а (п. 1) получим: А1М1=М1В1 (по теореме Фалеса).
3. Найдем АА1 по формуле средней линии трапеции: (АА1+12)/2=16, отсюда АА1 = 20 см.
Т.к. диагональ АС перпендикулярна стороне СЕ, получаем прямоугольный треуг-ик АСЕ. Рассмотрим его. Зная, что сумма острых углов прямоугольного треуг-ка равна 90°, находим неизвестный угол ЕАС: <EAC=90-<AEC=90-45=45° Т.е. прямоугольный АСЕ - равнобедренный, т.к. углы при его основании АЕ равны. АС=ЕС. Высота СН равнобедренного треугольника, проведенная к основанию, является также медианой. Значит АН=ЕН. Рассмотрим прямоугольные треуг-ики АВС (он прямоугольный, т.к. трапеция прямоугольная) и АНС. Они равны по одному из признаков равенства прямоугольных треугольников: если гипотенуза и катет одного прямоугольного треуг-ка соответственно равны гипотенузе и катету другого, то такие треуг-ки равны. В нашем случае: АС - общая гипотенуза АВ=СН (АВ является по сути той же высотой трапеции). Значит, ВС=АН Но АН=1/2АЕ, значит ВС=1/2АЕ.
1. Обозначим точки пересечения с прямой L: А1 и В1 соответственно точкам А и В. Расстояние от точки до прямой определяется длиной перпендикуляра, следовательно, надо найти АА1. Когда сделаем чертеж, получим прямоугольную трапецию АА1ВВ1. Обозначим точку на прямой l M1. То есть: АА1, BB1 и MM1 ⊥ L, и AA1, MM1 и ВВ1 ║L.
2. Зная, что АМ=МВ (по условию) и АА1, ММ1 и ВВ1 ║а (п. 1) получим: А1М1=М1В1 (по теореме Фалеса).
3. Найдем АА1 по формуле средней линии трапеции: (АА1+12)/2=16, отсюда АА1 = 20 см.
ответ: 20 см