У похилій трикутній призмі відстані між бічними ребрами дорівнюють 37 см, 13 см, 40 см. Знайдіть відстань між більшою бічною гранню і протилежним бічним ребром.
V=πr²*h; πr² - площадь основания цилиндра, h - высота
V=πr²*h , V=π * OB² * OO₁
Треугольник AOB - равнобедренный, так OA=OB как радиусы основания.
OH - это расстояние от центра O до хорды АВ и является высотой-медианой равнобедренного треугольника, и делит сторону АВ пополам под прямым углом.
Дальше, зная высоту ОН=d и НВ (= 1/2 длины хорды АВ) :
(1) по теореме Пифагора (с²=a²+b²) можно найти сторону ОВ как гипотенузу треугольника НОВ:
ОВ²=d²+HB²; ОВ = √(d²+HB²)
(2) Либо через sin угла α (который ∠АОВ), не зря же нам его величину α дали.
sinα - это отношение противолежащего этому углу катета к гипотенузе
[не забываем, что это ∠АОВ = α, а ∠АОВ = α/2 или =1/2α
то есть sin(1/2α) = НВ/ОВ, отсюда чтобы найти радиус ОВ = НВ / (1/2α).
Высота цилиндра и радиус основания образуют другой прямоугольный треугольник O₁ВО, в котором ∠O - прямой (+90°), ∠В = φ
Зная расстояние от верхнего центра до конца хорды O₁В и радиус ОВ (=r), можно найти высоту O₁О, опять же либо по теореме Пифагора, либо через косинус данного угла ∠O₁ОО = φ.
cosφ - отношение прилежащего катета к гипотенузе, то есть
cosφ = O₁О / O₁В, отсюда высота O₁О = O₁В * cosφ
Таким образом, вычислив радиус ОВ основания цилиндра и высоту O₁О цилиндра, сможем найти его объём по формуле: V=πr²*h
Человечество интересовалось воздушным океаном уже давно, но только 300-400 лет назад были изобретены первые приборы для изучения атмосферы: термометр, барометр, флюгер. В настоящее время изучение газовой оболочки Земли осуществляется под руководством Всемирной метеорологической организации (ВМО) , в которую, кроме России, входят еще много стран. Разработана программа сбора и обработки материалов с применением новейших технических средств. Для наблюдения за состоянием атмосферы создана сеть наземных метеорологических станций, оборудованных различными приборами.
Свою основную задачу — всестороннее изучение свойств атмосферы с целью прогноза погоды и искусственного воздействия на атмосферные процессы — метеорологи решают, главным образом анализируя и обобщая наблюдения над метеорологическими элементами и характером их изменений в пространстве и времени.
К метеорологическим элементам относятся: солнечная радиация, температура воздуха и почвы, влажность воздуха, атмосферное давление, ветер, облачность, осадки, снежный покров, видимость, метели, туманы, грозы и т. д.
Метеорологические наблюдения проводятся либо на поверхности Земли и в непосредственной близости к ней, либо на некоторой, иногда довольно значительной высоте. Поэтому принято различать наземные и аэрологические наблюдения.
Температуру измеряют с термометров, в Европе принято измерять ее в градусах «по Цельсию» . Эта система основана на физических свойствах воды: при нуле градусов она переходит в твердое состояние — замерзает, при 100° — в газообразное. Количество выпавших осадков измеряют осадкомером — емкостью, на стенки которой нанесена специальная разметка. Скорость перемещения воздушных потоков измеряется ветромером (анемометром) . Рядом с ним обычно устанавливают флюгер, указывающий направление ветра. На аэродромах и возле мостов, где ветер может представлять опасность, устанавливаются ветроуказатели — большие конусообразные мешки из полосатой ткани, открытые с обеих сторон.
Атмосферное давление измеряется барометром. На метеорологических станциях не менее 4-х раз в день снимают показания. В труднодоступных районах действуют автоматические радиометеорологические станции. А в океанах такие станции устанавливают на плавучих платформах. Свободную атмосферу изучают с радиозондов — приборов, которые прикрепляются к выпущенным в свободный полет каучуковым шарам, наполненным водородом. Они собирают данные о состоянии атмосферы на высотах до 30-40 км. Еще выше, до 120 км, поднимаются метеорологические ракеты. На определенной высоте часть ракеты с приборами отделяется и на парашюте спускается на земную поверхность. Для уточнения состава воздуха и исследования слоев, расположенных на большой высоте, применяются ракеты, зондирующие атмосферу до 500 км. Очень важные сведения о состоянии атмосферы, о погодных процессах, происходящих над Земной поверхностью, доставляют искусственные спутники Земли. Большой ценностью обладают наблюдения за атмосферными явлениями, которые ведутся космонавтами с орбитальных станций в космосе!
Объяснение:
Вообщем смысл в следующем.
Основная формула объёма цилиндра:
V=πr²*h; πr² - площадь основания цилиндра, h - высота
V=πr²*h , V=π * OB² * OO₁
Треугольник AOB - равнобедренный, так OA=OB как радиусы основания.
OH - это расстояние от центра O до хорды АВ и является высотой-медианой равнобедренного треугольника, и делит сторону АВ пополам под прямым углом.
Дальше, зная высоту ОН=d и НВ (= 1/2 длины хорды АВ) :
(1) по теореме Пифагора (с²=a²+b²) можно найти сторону ОВ как гипотенузу треугольника НОВ:
ОВ²=d²+HB²; ОВ = √(d²+HB²)
(2) Либо через sin угла α (который ∠АОВ), не зря же нам его величину α дали.
sinα - это отношение противолежащего этому углу катета к гипотенузе
[не забываем, что это ∠АОВ = α, а ∠АОВ = α/2 или =1/2α
то есть sin(1/2α) = НВ/ОВ, отсюда чтобы найти радиус ОВ = НВ / (1/2α).
Высота цилиндра и радиус основания образуют другой прямоугольный треугольник O₁ВО, в котором ∠O - прямой (+90°), ∠В = φ
Зная расстояние от верхнего центра до конца хорды O₁В и радиус ОВ (=r), можно найти высоту O₁О, опять же либо по теореме Пифагора, либо через косинус данного угла ∠O₁ОО = φ.
cosφ - отношение прилежащего катета к гипотенузе, то есть
cosφ = O₁О / O₁В, отсюда высота O₁О = O₁В * cosφ
Таким образом, вычислив радиус ОВ основания цилиндра и высоту O₁О цилиндра, сможем найти его объём по формуле: V=πr²*h