Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
-----------
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Построим равносторонний треугольник АВС, отметим точку вне треугольника Д, соединим точку Д с вершинами В и С. Получился треугольник ВДС, условно возьмем сторону треуг АВС пустьбудет АВ=ВС=СА=х, а стороны треуг ВД=с и СД=д, тогда из неравенства треугольника IхI≤IсI+IдI. Теперь возьмем точку М внутри треуг АВС. Получился треуг АМВ, пусть ВМ=в, а АМ=а, тогда из неравенства треугольника IаI≤IвI+IхI, а так как IхI≤IсI+IдI то вместо х подставим сумму с+д, в любом случае с+д будет либо больше, либо равно х. получаем IаI≤IвI+IсI+IдI. Вот мы и доказали, что АМ≤ВМ+ВД+СД.
НЕРАВЕНСТВО ТРЕУГОЛЬНИКА в геометрии утверждает, что длина любой тороны треугольника всегда не превосходит сумму длин двух его сторон. Пусть АВС-треугольник, тогда IАВI≤IВСI+IСАI, причем IАВI=IВСI+IСАI, то т.С будет лежать строго на отрезке АВ между точками А и В и такой треугольник ВЫРОЖДЕН.
Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
-----------
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.