KNP=KMP=35
KNM-вписанный= 1/2 дуги MK =1/2 дуги KN
PON=KON - центральный
KN=70
PNO=180-90-70=20
PN=90
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
ответ: 35°, 90°, 55°
Объяснение : ОК-перпендикуляр к хорде
радиус к середине хорды( ОН=ОМ ,значит ОК высота в равнобедренном треугольнике)
угол МОК равен 35° так как опирается на ту же дугу,что и угол КНМ Угол КОН равен углу КОМ и равен 35° Значит углы требуемого треугольника 35°,90°,55°. вместе 180°.