Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
S = 10,08 ед.изм2
или
S = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)
Объяснение:
1). Данную трапецию разделим на 3 сегмента:
1 Прямоугольник и 2 боковых треугольника.
2). Найдем площади данных фигур: (в клетках)
а). Sпр = 6 * 7 = 42 кл2.
б). Sтр1 = 5 * 6 / 2 = 15 кл2.
в). Sтр2 = 2 * 6 / 2 = 6 кл2.
Сумма данных сегментов будет являться площадью трапеции (в клетках):
г). Sтр = 42 + 15 + 6 = 63 кл2.
Единицы измерения не указаны, возможно см2, но продолжим так, зная размер клетки, получим площадь в ед.изм.:
S = 0,4 * 0,4 * 63 = 0,16 * 63 = 10,08 ед.изм2.
или
S = 4/10 * 4/10 * 63 = (4 * 4)/(10 * 10) * 63 = 16/100 * 63 = (16 * 63)/(100 * 1) = 1008/100 = 10 8/100 ед.изм2 (десять целых восемь сотых единиц измерения в квадрате)