Т.к. сторона АВ делится как 3:2, то АМ=3х, МВ=2х.Для решения задачи проведите радиусы окружности в точки касания, обозначьте точки буквами: на стороне АВ - М, на стороне ВС -N, на АС -F. Радиусы, проведенные в точку касания перпендикулярны касательной. Получаются прямоугольные треугольники МВО и ВОN. Эти треугольники равны по катету и гипотенузе.Значит, МВ=ВN=2х. Аналогично АМ=АF=3х, СN=CF=5. Периметр-это сумма длин всех сторон треугольника: 3х+3х+2х+2х+5+5=30
10х=20, х=2. Подставляя, получаем, что АС=11см.
Формула объема шарового слоя:
V = (1/2)*π*H(R²+r²+H²/3), где H - высота шарового слоя, R и r - радиусы оснований шарового слоя. В нашем случае шаровой слой расположен по одну сторону от центра шара. Найдем высоту слоя. Она равна разности расстояний от центра шара до плоскостей оснований. Расстояние до дальней плоскости найдем из прямоугольного треугольника с гипотенузой - радиус шара = 5 см и одним из катетов - радиус основания = 3 см. Треугольник Пифагоров (отношение сторон 3:4:5), значит расстояние до дальней плоскости равно h1= 4см. Точно так же найдем расстояние до ближней к центру шара плоскости (основания слоя) h2 = 3см. (из Пифагорова треугольника с гипотенузой 5см и катетом 4см). Разность расстояний - высота слоя =4-3 = 1 см.
Тогда по формуле имеем:
V=(1/2)*π*1*(16+9+1/3) = π*(76)/6 = (12и2/3)*π.
180-125=55
115-55=60
ответ: 60
Объяснение: