Пусть в трапеции ABCD AD, BC - основания, а диагонали пересекаются в точке O. В треугольнике AOD проведем высоту OH. Так как трапеция равнобедренная, AO=DO, и в прямоугольном треугольнике AOD острые углы равны 45 градусам. Тогда в прямоугольном треугольнике AOH один из углов равен 45 градусам, тогда и второй угол равен 45 градусам, тогда катеты равны, AH=OH. Аналогично проведем высоту OM в треугольнике BOC, получим, что BM=MO (треугольник BMO прямоугольный и равнобедренный). Тогда высота трапеции - HM - равна AH+BM - полусумме оснований - средней линии. Площадь равна произведению средней линии на высоту, тогда она равна 6*6=36.
Скорость - это производная по пути.
Координата даёт путь от начала координат.
Находим проекции скорости на оси.
Vx = 2, Vy = -1, Vz = 3.
Отсюда скорость равна V = √(2² + (-1)² + 3²) = √14 ≈ 3,7417.