Сформулировать и доказать признак равенства прямоугольного треугольника по гипотенузе и острому углу
Пусть А и А1 - острые углы которые равны В и В1 - вторая пара острых углов угол В = 180-90-угол А = 90- угол А угол В1= 180-90-угол А1 = 90-угол А1 Мы знаем что углы А и А1 равны по условию задачи, Значит углы В и В1 тоже равны К гипотенузе прилегают два острых угла. Угол А1=углу А угол В равен углу В1 гипотенузы у треугольников тоже равные Получаем что треугольники равны по стороне (гипотенузе) и двум прилегающим к ней углам. Что и требовалось доказать
1. Треугольники DOC и АОВ подобны по первому признаку подобия треугольников: два угла одного треугольника соответственно равны двум углам другого. В нашем случае углы DOC и АОВ равны как вертикальные углы, а углы DCA и САВ равны как накрест лежащие углы при пересечении параллельных прямых DC и АВ секущей АС. 2. Выразим ОС как 15-АО 3. Поскольку треугольники подобны, можно записать: АО / ОС = АВ / DC, АО = ОС*АВ / DC AO = (15-AO)*AB / DC AO = (15-AO)*96 / 24 24AO = (15-AO)*96 24AO = 1440 - 96AO 120AO = 1440 AO = 12 см
Пусть А и А1 - острые углы которые равны
В и В1 - вторая пара острых углов
угол В = 180-90-угол А = 90- угол А
угол В1= 180-90-угол А1 = 90-угол А1 Мы знаем что углы А и А1 равны по условию задачи, Значит углы В и В1 тоже равны
К гипотенузе прилегают два острых угла. Угол А1=углу А угол В равен углу В1 гипотенузы у треугольников тоже равные
Получаем что треугольники равны по стороне (гипотенузе) и двум прилегающим к ней углам. Что и требовалось доказать