Треугольником называется фигура,состоящая из трех точек не лежащих на одной прямой и трех отрезков соединяющих эти точки.
Периметр треугольника- это сумма длин трех сторон треугольника.
(рисунок во вложении)
№2
Равными треугольниками называют такие треугольники у которых равных соответствующие элементы(стороны и углы)
№3
Теоремой называют утверждение,справедливость которого устанавливают путем рассуждений,а сами рассуждения называются докозательствами теоремы.
№4
Первый признак равенства треугольников
Если две стороны и угол между нимми одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника,то такие треугольники равны.
Доказательство стр 30.
№5
Отрезок АН называется перпендикуляром,проведенным из точки А к прямой а,если прямые АН и а перпендикулярны. Рисунок на стр 32(рис. 55)(рис. 55)
№6
Теорема
Из точки,не лежащей на прямой,можно провести перпендикуляр к этой прямой,и притом только один. (доказательство страница 32)
№7
Отрезок,соединяющий вершину треугольника с серединой противоположной стороны,называется медианой треугольника
Всего треугольник имеет 3 медианы
№8
отрезок,биссектрисы угла треугольника,соединяющий вершину треугольника с точкой противоположной стороны,называется биссектрисой треугольника.
Треугольник имеет три биссектрисы.
№9
Перпендикуляр,проведенный из вершины треугольника к прямой,содержащей противоположную сторону,называется высотой треугольника.
Любой треугольник имеет три высоты.
№10
Треугольник называется равнобедренным, если две его стороны равны. Равные стороны называются боковыми сторонами,а третья сторона называется основанием.
№11
Треугольник,все стороны которого равны называется равносторонним.
№ 12
Докозательство на странице 35
№13
Теорема
В равнобедренном треугольнике биссектриса проведенная к основанию является медианой и высотой(доказательсво стр 35-36)
№14
Если сторона и два прелижащей к ней угла одного треугольника соответственно равным стороне и двум прелижащим к ней углам другого треугольника,то такие треугольники равны.( доказательство на странице 38-39)
№15
Если три стороны олного треугольника соответственно равным трем сторонам другого треугольника,то такие треугольника равны. (доказательство 39-40 стр)
№16
Определение- предложение, в котором разъесняется смысл того или иного выражения или названия.
Окружность-геометрическая фигура состоящая из всех точек плоскости расположенных на заданном расстоянии от данной точки
Центр-данная точка.
радиус- отрезок соединяющий центр с какой-либо точкой окружности
хорда-отрезок соединяющий две точки окружности
диаметр-хорда проходящая через центр.
ответы на вопросы главы III
№1
Две прямые называются паралльными если они не пересекаются.
Два отрезка называются параллельными,если они лежат на параллельных прямых.
№2
Прямая с называется секущей по отношению к прямым а и в если она пересекает их в двух точках.образуются углы: накрестлежащие,односторонние и соотвественные.
№7 аксиома- исходные положения
примеры:
через любые две точки проходит прямая и притом только одна
на любом луче от его начала можно отложить отрезок равный данному и притом только один.
№9
через точку не лежащую на данной прямой проходит только одна прямая параллельная данной
№10
следствия- утверждения которое выводятся непосредственно из аксиом или теорем
№ 12
теорема обратной данной называется такая теорема в которой условием является заключение данной теоремы,а заключением-условие данной теоремы.
Пример: если две параллельные прямые пересечены секущей,то накрестлежащие углы равны.
ответы на вопросы для повторения к главе IV
№1
Сумма углов треугольника равна 180 градусам
№2
Внешний угол-угол смежный с каким-нибудь углом этого треугольника.
№4
остроугольным треугольником называют треугольник если все его углы острые
тупоугольным треугольником называют треугольник,если один из его углов тупой
№5
прямоугольным треугольником называют треугольник у которого один из его углов прямой.
Сторона лежащая против прямого угла называется гипотенузой, две другие-катетами.
№ 9
Неравенство треугольника выходит из следствия:
Для любых трех точек А,В,С не лежащих на одной прямой справедливы неравенства
АВ< АС+ВС, АС<АВ+ВС, ВС<ВА+АС.
Каждое из этих неравенств называется неравенством треугольника.
№12
Если гипотенуза и острый катет одного прямоугольного треугольника соответсвенно равны гипотенузе и острому углу другоого прямоугольного треугольника,то такие треугольники равны
№13
Если гипотенуза и катет одногоо прямоуголльного треугольника соответсвенно равны гипотенузе и катету другого то такие треугольники равны.
№ 16
Расстоянием от точки до прямой называется длина перпендикуляра проведенного из точки к прямой.
№ 18
Расстояние от произвольной точки одной из параллельных прямых до другой прямой называется расстоянием между этими прямыми.
7.(2б)
Найти угол между стороной AB и медианой BB₁ треугольника ABC :
A(3; 5; 0) , B(0 ; - 6; 0) , C(3 ;1 ;0) . AB₁=CB₁ = AC/2 = 2
∠ABB₁ -?
- - - - - - - - - - --
B₁ (3 ; 3; 0) _середина стороны AC * * * (3+3) /2 ; (5+1)/2 ; (0+0)/2 * * *
BA { 3 ; 11 ; 0 } * * * 3 -0 ; 5 -(-6) ; 0 -0 * * *
BB₁ { 3 ; 9 ; 0 } * * * 3 -0 ; 3 -(-6) ; 0 -0 * * *
cos(∠(BA, BB₁) ) = BA*BB₁ / |BA|*|BB₁| =
(3*3+11*9 +0*0)/√(3²+11²+0²)*√(3²+9²+0²) =108/√130*√90 =
108/ 30 √13 =3,6 / √13 .
* * * ! 3,6 /√13 =(√3,6²) /√13 =√12,96 /√13 < 1 * * *
∠(BA, BB₁) =arccos(3,6 /√13 )
BA*BB₁ - скалярное произведение векторов BA и BB₁
|BA| и |BB₁| - модули векторов BA и BB₁
- - - - - - - -
8.(2б)
B(2 ; - 1; - 1) , A(2 ; 2 ; - 4) , C(3 ; - 1 ; -2) ,
BA { 0 ; 3 ; -3} ; BC { 1 ; 0 ; - 1}
cos(∠(BA, BC) ) = BA*BB / |BA|*|BC|
BA*BC - скалярное произведение векторов BA и BC
|BA| и |BC| - модули векторов BA и BC
* * * ∠(BA, BC) = ∠B * * *
cos∠B = cos(∠(BA, BC) )= (0*1+3*0 + (-3)*(-1) )/√(0²+3²+(-3)² )*√(1²+0²+(-1)²) =
3/√18*√2 = 3/6 =1/2 ⇒ ∠B =60 °
Внешний угол при вершине B будет 180° - ∠B = 180° - 60 ° = 120°
- - - - - - - -
9.(2б) Центр сферы A(4 ; -4 ; 2) , O(0 ; 0 ;0) ∈ поверхности сферы
* * *(x - x₀)²+(y - y₀)²+ (z - z₀)² = R² уравнение сферы радиусом R , центр которой в точке A( x₀; y₀ ; z₀) * * *
(x - 4)²+(y +4)²+ (z -2)² = R² Нужно найти R
Т.к. O(0 ; 0 ;0) ∈ поверхности сферы ,то
(0 - 4)²+(0 +4)²+ (0 -2)² = R² ⇔ R² =36
следовательно
(x - 4)²+(y +4)²+ (z -2)² = 36 * * * R² =6² * * *
2,6
Объяснение:
Непоняла 1, С это же точка, а не прямая